5.7 Integrals

  5.7.1 Integrals from 0 to infinity
  5.7.2 Integrals from -infinity to infinity

5.7.1 Integrals from 0 to infinity

0xnexdx=n!0xneaxdx=n!1an+1use y=ax0x3exdx=3!0x3ex1dx=3!ξ(4)

Start by multiplying numerator and denominator by ex using 11y=1+y+y2+ which becomes 0x3n=1enxdx or n=10x3enxdx, then use z=nx, this gives n=11n40z3ezdx or (3!)n=11n4 or 3!ξ(4)0ex4dx=14Γ(14) Start by using x4=y or x=y14. then dydx=14y(141), now the integral becomes 140y(141)eydy and compare this to 0y(s1)exdx=Γ(s)0exdx=0ex12dx Use same method as above. Will get 2Γ(2)=2ζ(s)Γ(s)=0x(s1)ex1dxs>1ζ(n+1)(n!)=0xnex1dxn>0ζ(2)=π26ζ(4)=π490ζ(s)=n=11nss>1ζ(4)=114+124+134+

So given 0x3ex1dx, write as 0x(41)ex1dx=ζ(4)Γ(4) or (3!)ζ(4)0xnexdx=n!0x1nexdx=Γ(n)=(n1)!

I=dxa2x2use x=asinθI=dxx2+a2use x=atanθI=0xeax2dxuse u=x2I=0eax2dxuse I=12eax2dx=12πa

For I=0xneax2dx or I=xneax2dx. If n is even, use the trick of I(a)=eax2dx and repeated I(a). if n is odd, use I(a)=xeax2dx=12a (integration by parts) and then repeated I(a).

GAMMA:

Γ(n)=0xn1exdxΓ(12)=0x12exdx

use u=x12, then dudx=12x12 and the integral becomes 0x12exdx=01ueu2(2udu)=20eu2du=πI=0xeaxsinkx dxI=0xeaxcoskx dx

For these, we will be given I=0eaxsinkx dx and then use I(a)=0eaxsinkx dx and then do the I(a) method.

5.7.2 Integrals from -infinity to infinity

ex2dx=πeax2dx=πaa>0ea(x+b)2dx=πaa>0xneax2dx=Ifor n even, use the I(a) method