2.9 Example problem from lecture Nov 30, 2016

PDF (letter size)
PDF (legal size)

This is complete solution of class example (example 2). Math 319, lecture Nov. 30. 2016.

Solve the differential equation\begin{align*} 2y^{\prime \prime }\left ( t\right ) +y^{\prime }\left ( t\right ) +2y\left ( t\right ) & =g\left ( t\right ) \\ y\left ( 0\right ) & =0\\ y^{\prime }\left ( 0\right ) & =0 \end{align*}

Where \[ g\left ( t\right ) =\left \{ \begin{array} [c]{ccc}1 & & 5\leq t<20\\ 0 & & \text{otherwise}\end{array} \right . \] Using Laplace transform method.

Solution

The first step is to find the Laplace transform of the forcing function \(g\left ( t\right ) \). The function \(g\left ( t\right ) \) is

pict

We now write \(g\left ( t\right ) \) in terms of the unit step function \(u_{c}\left ( t\right ) \) defined as \(u_{c}=\left \{ \begin{array} [c]{ccc}0 & & t<c\\ 1 & & t\geq c \end{array} \right . \) as follows\begin{equation} g\left ( t\right ) =u_{5}\left ( t\right ) -u_{20}\left ( t\right ) \tag{1} \end{equation} Now we use the property that \[\mathcal{L}\left \{ u_{c}\left ( t\right ) f\left ( t-c\right ) \right \} =e^{-cs}\mathcal{L}\left \{ f\left ( t\right ) \right \} \] To obtain the Laplace transform of \(g\left ( t\right ) \) in (1) as follows\begin{align*} \mathcal{L}\left \{ g\left ( t\right ) \right \} & =\mathcal{L}\left \{ u_{5}\left ( t\right ) \right \} -\mathcal{L}\left \{ u_{20}\left ( t\right ) \right \} \\ & =e^{-5s}\mathcal{L}\left \{ 1\right \} -e^{-20s}\mathcal{L}\left \{ 1\right \} \end{align*}

But \(\mathcal{L}\left \{ 1\right \} =\frac{1}{s}\), hence the above becomes\begin{align*} \mathcal{L}\left \{ g\left ( t\right ) \right \} & =e^{-5s}\frac{1}{s}-e^{-20s}\frac{1}{s}\\ & =\frac{e^{-5s}-e^{-20s}}{s} \end{align*}

Now that we found \(\mathcal{L}\left \{ g\left ( t\right ) \right \} \), we go back to the original ODE and take the Laplace transform of the ODE, which results in\[\mathcal{L}\left \{ 2y^{\prime \prime }\left ( t\right ) \right \} +\mathcal{L}\left \{ y^{\prime }\left ( t\right ) \right \} +\mathcal{L}\left \{ 2y\left ( t\right ) \right \} =\mathcal{L}\left \{ g\left ( t\right ) \right \} \] Let \(Y\left ( s\right ) =\mathcal{L}\left \{ y\left ( t\right ) \right \} \), then the above becomes\[ 2\left \{ s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) \right \} +\left \{ sY\left ( s\right ) -y\left ( 0\right ) \right \} +2Y\left ( s\right ) =\mathcal{L}\left \{ g\left ( t\right ) \right \} \] But \(y\left ( 0\right ) =y^{\prime }\left ( 0\right ) =0\) and the above reduces to\[ 2s^{2}Y\left ( s\right ) +sY\left ( s\right ) +2Y\left ( s\right ) =\frac{e^{-5s}-e^{-20s}}{s}\] Solving for \(Y\left ( s\right ) \) gives\begin{align} Y\left ( s\right ) & =\frac{e^{-5s}-e^{-10s}}{s\left ( 2s^{2}+s+2\right ) }\nonumber \\ & =\left ( \frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }-\frac{e^{-20s}}{s\left ( 2s^{2}+s+2\right ) }\right ) \tag{2} \end{align}

We now need to find the inverse Laplace transform of \(Y\left ( s\right ) \). Looking at \(\frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }\),the first step is to use the property\[ u_{c}\left ( t\right ) f\left ( t-c\right ) \overset{\mathcal{L}}{\Longleftrightarrow }e^{-cs}F\left ( s\right ) \] Comparing the expressions, we see that\begin{equation} u_{5}\left ( t\right ) f\left ( t-c\right ) \Longleftrightarrow \frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }\tag{3} \end{equation} Where\begin{equation} f\left ( t\right ) \Longleftrightarrow \frac{1}{s\left ( 2s^{2}+s+2\right ) }\tag{4} \end{equation} Therefore, we just need to find inverse Laplace transform of \(\frac{1}{s\left ( 2s^{2}+s+2\right ) }\). Using partial fractions\begin{align} \frac{1}{s\left ( 2s^{2}+s+2\right ) } & =\frac{A}{s}+\frac{Bs+C}{2s^{2}+s+2}\tag{5}\\ 1 & =A\left ( 2s^{2}+s+2\right ) +\left ( Bs+C\right ) s\nonumber \\ 1 & =2As^{2}+As+2A+Bs^{2}+Cs\nonumber \\ 1 & =2A+s\left ( A+C\right ) +s^{2}\left ( 2A+B\right ) \nonumber \end{align}

Therefore\begin{align*} A & =\frac{1}{2}\\ A+C & =0\\ 2A+B & =0 \end{align*}

Hence from the second equation \(C=-\frac{1}{2}\), and from the third equation \(B=-1\) Therefore (5) becomes\begin{align} \frac{1}{s\left ( 2s^{2}+s+2\right ) } & =\frac{1}{2}\frac{1}{s}+\frac{-s-\frac{1}{2}}{2s^{2}+s+2}\nonumber \\ & =\frac{1}{2}\frac{1}{s}+\frac{1}{2}\frac{-1-2s}{2s^{2}+s+2}\nonumber \\ & =\frac{1}{2}\frac{1}{s}-\frac{s}{2s^{2}+s+2}-\frac{1}{2}\frac{1}{2s^{2}+s+2}\tag{5A} \end{align}

The first term above is easy, we know that\begin{equation} \frac{1}{2}\frac{1}{s}\Longleftrightarrow \frac{1}{2}\tag{6} \end{equation} Now we will find inverse Laplace transform of second term in (5A) \(\frac{s}{2s^{2}+s+2}\). For this we start by completing the squares in the denominator. Let\begin{align*} 2s^{2}+s+2 & =a\left ( s+b\right ) ^{2}+c\\ & =a\left ( s^{2}+b^{2}+2bs\right ) +c\\ & =as^{2}+ab^{2}+2bas+c \end{align*}

Hence \(a=2,2ab=1\) or \(b=\frac{1}{4}\) and \(ab^{2}+c=2\), hence \(c=2-2\left ( \frac{1}{4}\right ) ^{2}=2-2\left ( \frac{1}{16}\right ) =2-\frac{1}{8}=\frac{15}{8}\), Therefore\[ 2s^{2}+s+2=2\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{8}\] We now re-write second term in (5A), which is \(\frac{s}{2s^{2}+s+2}\) as \(\frac{s}{2\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{8}}\). We did this because we wanted this to be in the form \(\frac{s}{s^{2}+a}\), therefore\[ \frac{s}{2\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{8}}=\frac{1}{2}\frac{s}{\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{16}}\] Now we let \(\tilde{s}=s+\frac{1}{4}\), therefore the above becomes\begin{equation} \frac{1}{2}\frac{\tilde{s}-\frac{1}{4}}{\tilde{s}^{2}+\frac{15}{16}}=\frac{1}{2}\left ( \frac{\tilde{s}}{\tilde{s}^{2}+\frac{15}{16}}-\frac{1}{4}\frac{1}{\tilde{s}^{2}+\frac{15}{16}}\right ) \tag{7} \end{equation} Using \(\frac{s}{s^{2}+a^{2}}\Leftrightarrow \cos \left ( at\right ) \) then \[ \frac{\tilde{s}}{\tilde{s}^{2}+\frac{15}{16}}\Leftrightarrow e^{-\frac{t}{4}}\cos \left ( \sqrt{\frac{15}{16}}t\right ) \] The reason for \(e^{-\frac{t}{4}}\) being there, is because we evaluated \(F\left ( s\right ) \) at \(F\left ( s+\frac{1}{4}\right ) \). This used the shift property \[ F\left ( s+a\right ) =e^{-at}f\left ( t\right ) \] Therefore \(F\left ( s+\frac{1}{4}\right ) =e^{-\frac{t}{4}}f\left ( t\right ) \). Now we do the second term in (7). Since \(\frac{1}{\tilde{s}^{2}+\frac{15}{16}}=\frac{1}{\sqrt{\frac{15}{16}}}\frac{\sqrt{\frac{15}{16}}}{\tilde{s}^{2}+\frac{15}{16}}\), then, now using \(\frac{a}{s^{2}+a^{2}}\Leftrightarrow \sin \left ( at\right ) \) we obtain\[ \frac{1}{\sqrt{\frac{15}{16}}}\frac{\sqrt{\frac{15}{16}}}{\tilde{s}^{2}+\frac{15}{16}}\Leftrightarrow \frac{1}{\sqrt{\frac{15}{16}}}e^{-\frac{t}{4}}\sin \left ( \sqrt{\frac{15}{16}}t\right ) \] And we remember to add \(e^{-\frac{t}{4}}\) again, due to the shift in \(s\). Therefore (7) becomes\begin{align} \frac{s}{2s^{2}+s+2} & \Leftrightarrow \frac{1}{2}\left ( e^{-\frac{t}{4}}\cos \left ( \sqrt{\frac{15}{16}}t\right ) -\frac{1}{4}e^{-\frac{t}{4}}\frac{1}{\sqrt{\frac{15}{16}}}\sin \left ( \sqrt{\frac{15}{16}}t\right ) \right ) \nonumber \\ & =\frac{e^{-\frac{t}{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}t\right ) -\sin \left ( \frac{\sqrt{15}}{4}t\right ) \right ) \tag{8} \end{align}

This complete the second term in (5A). Now we will do the third term in (5A) which is \(\frac{1}{2s^{2}+s+2}\) which is\begin{align*} \frac{1}{2s^{2}+s+2} & =\frac{1}{2\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{8}}\\ & =\frac{1}{2}\frac{1}{\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{16}}\\ & =\frac{1}{2\sqrt{\frac{15}{16}}}\frac{\sqrt{\frac{15}{16}}}{\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{16}} \end{align*}

Hence\begin{align} \frac{1}{2\sqrt{\frac{15}{16}}}\frac{\sqrt{\frac{15}{16}}}{\left ( s+\frac{1}{4}\right ) ^{2}+\frac{15}{16}} & \Longleftrightarrow \frac{1}{2\sqrt{\frac{15}{16}}}e^{-\frac{t}{4}}\sin \left ( \sqrt{\frac{15}{16}}t\right ) \nonumber \\ & =\frac{2}{\sqrt{15}}e^{-\frac{t}{4}}\sin \left ( \frac{\sqrt{15}}{4}t\right ) \tag{9} \end{align}

Now we put all the results back together.\begin{align*} \frac{1}{s\left ( 2s^{2}+s+2\right ) } & =\frac{1}{2}\frac{1}{s}-\frac{s}{2s^{2}+s+2}-\frac{1}{2}\frac{1}{2s^{2}+s+2}\\ & \Longleftrightarrow \frac{1}{2}-\frac{e^{-\frac{t}{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}t\right ) -\sin \left ( \frac{\sqrt{15}}{4}t\right ) \right ) -\frac{1}{2}\left ( \frac{2}{\sqrt{15}}e^{-\frac{t}{4}}\sin \left ( \frac{\sqrt{15}}{4}t\right ) \right ) \end{align*}

We can simplify this more\begin{align*} \frac{1}{s\left ( 2s^{2}+s+2\right ) } & \Longleftrightarrow \frac{1}{2}-\frac{e^{-\frac{t}{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}t\right ) -\sin \left ( \frac{\sqrt{15}}{4}t\right ) +2\sin \left ( \frac{\sqrt{15}}{4}t\right ) \right ) \\ & =\frac{1}{2}-\frac{e^{-\frac{t}{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}t\right ) +\sin \left ( \frac{\sqrt{15}}{4}t\right ) \right ) \end{align*}

Using this back in (2), where we want to evaluates \(\frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }\), gives\[ \frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }\Longleftrightarrow u_{5}\left ( t\right ) f\left ( t-5\right ) \] Where \[ f\left ( t-5\right ) =\frac{1}{2}-\frac{e^{\frac{-\left ( t-5\right ) }{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}\left ( t-5\right ) \right ) +\sin \left ( \frac{\sqrt{15}}{4}\left ( t-5\right ) \right ) \right ) \] The above complete the first term in (2). The second term in (2) is the same, but the delay now is \(20\) instead of \(5\). Hence\[ \frac{e^{-20s}}{s\left ( 2s^{2}+s+2\right ) }\Longleftrightarrow u_{20}\left ( t\right ) f\left ( t-20\right ) \] With the same function \(f\left ( t\right ) \) found above. Therefore, the final inverse transform now is\begin{align*} y\left ( t\right ) & \Longleftrightarrow \left ( \frac{e^{-5s}}{s\left ( 2s^{2}+s+2\right ) }-\frac{e^{-20s}}{s\left ( 2s^{2}+s+2\right ) }\right ) \\ & =\left ( u_{5}\left ( t\right ) f\left ( t-5\right ) -u_{20}\left ( t\right ) f\left ( t-20\right ) \right ) \end{align*}

Where\[ f\left ( t-20\right ) =\frac{1}{2}-\frac{e^{\frac{-\left ( t-20\right ) }{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}\left ( t-20\right ) \right ) +\sin \left ( \frac{\sqrt{15}}{4}\left ( t-20\right ) \right ) \right ) \] This complete the solution. The final solution is \begin{align*} y\left ( t\right ) & =u_{5}\left ( t\right ) \left ( \frac{1}{2}-\frac{e^{\frac{-\left ( t-5\right ) }{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}\left ( t-5\right ) \right ) +\sin \left ( \frac{\sqrt{15}}{4}\left ( t-5\right ) \right ) \right ) \right ) \\ & -u_{20}\left ( t\right ) \left ( \frac{1}{2}-\frac{e^{\frac{-\left ( t-20\right ) }{4}}}{2\sqrt{15}}\left ( \sqrt{15}\cos \left ( \frac{\sqrt{15}}{4}\left ( t-20\right ) \right ) +\sin \left ( \frac{\sqrt{15}}{4}\left ( t-20\right ) \right ) \right ) \right ) \end{align*}

Here is a plot of the above solution

pict

References

1.
Lecture notes Nov. 30, 2016 by Professor Minh-Binh Tran. Math dept. Univ. Of Wisconsin Madison.
2.
Wikipedia web page on Laplace transform properties.