2.10 HW8

  2.10.1 Section 6.1 problem 7
  2.10.2 Section 6.1 problem 8
  2.10.3 Section 6.1 problem 9
  2.10.4 Section 6.1 problem 10
  2.10.5 Section 6.2 problem 17
  2.10.6 Section 6.2 problem 18
  2.10.7 Section 6.2 problem 19
  2.10.8 Section 6.2 problem 20
  2.10.9 Section 6.2 problem 21
  2.10.10 Section 6.2 problem 22
  2.10.11 Section 6.2 problem 23
  2.10.12 Section 6.3 problem 25
  2.10.13 Section 6.3 problem 26
  2.10.14 Section 6.3 problem 27
  2.10.15 Section 6.3 problem 28
  2.10.16 Section 6.3 problem 29
  2.10.17 Section 6.3 problem 30
  2.10.18 Section 6.3 problem 31
  2.10.19 Section 6.3 problem 32
  2.10.20 Section 6.3 problem 33
  2.10.21 Section 6.4 problem 21
PDF (letter size)
PDF (legal size)

2.10.1 Section 6.1 problem 7

Find Laplace Transform of \(f\left ( t\right ) =\cosh \left ( bt\right ) \)

solution Since \(\cosh \left ( bt\right ) =\frac{e^{bt}+e^{-bt}}{2}\) then\begin{align*} \mathcal{L}\cosh \left ( bt\right ) & =\frac{1}{2}\mathcal{L}\left ( e^{bt}+e^{-bt}\right ) \\ & =\frac{1}{2}\left ( \mathcal{L}e^{bt}+\mathcal{L}e^{-bt}\right ) \end{align*}

But \[\mathcal{L}e^{bt}=\frac{1}{s-b}\]

For \(s>b\) and

\[\mathcal{L}e^{bt}=\frac{1}{s-b}\]

For \(s<b\). Hence

\begin{align*} \mathcal{L}\cosh \left ( bt\right ) & =\frac{1}{2}\left ( \frac{1}{s-b}+\frac{1}{s+b}\right ) \\ & =\frac{s^{2}}{s^{2}-b^{2}} \end{align*}

For \(s>\left \vert b\right \vert \)

2.10.2 Section 6.1 problem 8

Find Laplace Transform of \(f\left ( t\right ) =\sinh \left ( bt\right ) \)

solution Since \(\sinh \left ( bt\right ) =\frac{e^{bt}-e^{-bt}}{2}\) then\begin{align*} \mathcal{L}\sinh \left ( bt\right ) & =\frac{1}{2}\mathcal{L}\left ( e^{bt}-e^{-bt}\right ) \\ & =\frac{1}{2}\left ( \mathcal{L}e^{bt}-\mathcal{L}e^{-bt}\right ) \end{align*}

But, as we found in the last problem \[\mathcal{L}e^{bt}=\frac{1}{s-b}\qquad s>b \] And\[\mathcal{L}e^{-bt}=\frac{1}{s+b}\qquad s<b \] Therefore\begin{align*} \mathcal{L}\sinh \left ( bt\right ) & =\frac{1}{2}\left ( \frac{1}{s-b}-\frac{1}{s+b}\right ) \qquad s>b;s<b\\ & =\frac{b}{s^{2}-b^{2}}\qquad s>\left \vert b\right \vert \end{align*}

2.10.3 Section 6.1 problem 9

Find Laplace Transform of \(f\left ( t\right ) =e^{at}\cosh \left ( bt\right ) \)

solution Using the property that \[ e^{at}f\left ( t\right ) \Longleftrightarrow F\left ( s-a\right ) \] Where \(f\left ( t\right ) =\cosh \left ( bt\right ) \) now. We already found above that \(\cosh \left ( bt\right ) \Longleftrightarrow \frac{s}{s^{2}-b^{2}}\), for \(s>\left \vert b\right \vert \). In other words, \(F\left ( s\right ) =\frac{s}{s^{2}-b^{2}}\), therefore\[ e^{at}\cosh \left ( bt\right ) \Longleftrightarrow \frac{\left ( s-a\right ) }{\left ( s-a\right ) ^{2}-b^{2}}\qquad s-a>\left \vert b\right \vert \]

2.10.4 Section 6.1 problem 10

Find Laplace Transform of \(f\left ( t\right ) =e^{at}\sinh \left ( bt\right ) \)

solution Using the property that \[ e^{at}f\left ( t\right ) \Longleftrightarrow F\left ( s-a\right ) \] Where \(f\left ( t\right ) =\sinh \left ( bt\right ) \) now. We already found above that \(\sinh \left ( bt\right ) \Longleftrightarrow \frac{b}{s^{2}-b^{2}}\), for \(s>\left \vert b\right \vert \). In other words, \(F\left ( s\right ) =\frac{b}{s^{2}-b^{2}}\), therefore\[ e^{at}\sinh \left ( bt\right ) \Longleftrightarrow \frac{b}{\left ( s-a\right ) ^{2}-b^{2}}\qquad s-a>\left \vert b\right \vert \]

2.10.5 Section 6.2 problem 17

Use Laplace transform to solve \(y^{\left ( 4\right ) }-4y^{\prime \prime \prime }+6y^{\prime \prime }-4y^{\prime }+y=0\) for \(y\left ( 0\right ) =0,y^{\prime }\left ( 0\right ) =1,y^{\prime \prime }\left ( 0\right ) =0,y^{\prime \prime \prime }\left ( 0\right ) =1\)

Solution Taking Laplace transform of the ODE gives

\begin{equation} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} -4\mathcal{L}\left \{ y^{\prime \prime \prime }\right \} +6\mathcal{L}\left \{ y^{\prime \prime }\right \} -4\mathcal{L}\left \{ y^{\prime }\right \} +\mathcal{L}\left \{ y\right \} =0 \tag{1} \end{equation} Let \(\mathcal{L}\left \{ y\right \} =Y\left ( s\right ) \) then\begin{align*} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} & =s^{4}Y\left ( s\right ) -s^{3}y\left ( 0\right ) -s^{2}y^{\prime }\left ( 0\right ) -sy^{\prime \prime }\left ( 0\right ) -y^{\prime \prime \prime }\left ( 0\right ) \\ & =s^{4}Y\left ( s\right ) -s^{3}\left ( 0\right ) -s^{2}\left ( 1\right ) -s\left ( 0\right ) -1\\ & =s^{4}Y\left ( s\right ) -s^{2}-1 \end{align*}

And\begin{align*} \mathcal{L}\left \{ y^{\prime \prime \prime }\right \} & =s^{3}Y\left ( s\right ) -s^{2}y\left ( 0\right ) -sy^{\prime }\left ( 0\right ) -y^{\prime \prime }\left ( 0\right ) \\ & =s^{3}Y\left ( s\right ) -s^{2}\left ( 0\right ) -s\left ( 1\right ) -0\\ & =s^{3}Y\left ( s\right ) -s \end{align*}

And\begin{align*} \mathcal{L}\left \{ y^{\prime \prime }\right \} & =s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) \\ & =s^{2}Y\left ( s\right ) -s\left ( 0\right ) -1\\ & =s^{2}Y\left ( s\right ) -1 \end{align*}

And\begin{align*} \mathcal{L}\left \{ y^{\prime }\right \} & =sY\left ( s\right ) -y\left ( 0\right ) \\ & =sY\left ( s\right ) \end{align*}

Hence (1) becomes\begin{align*} \left ( s^{4}Y\left ( s\right ) -s^{2}-1\right ) -4\left ( s^{3}Y\left ( s\right ) -s\right ) +6\left ( s^{2}Y\left ( s\right ) -1\right ) -4\left ( sY\left ( s\right ) \right ) +Y\left ( s\right ) & =0\\ Y\left ( s\right ) \left ( s^{4}-4s^{3}+6s^{2}-4s+1\right ) -s^{2}-1+4s-6 & =0 \end{align*}

Therefore\begin{align} Y\left ( s\right ) & =\frac{s^{2}-4s+7}{s^{4}-4s^{3}+6s^{2}-4s+1}\nonumber \\ & =\frac{s^{2}-4s+7}{\left ( s-1\right ) ^{4}}\nonumber \\ & =\frac{s^{2}}{\left ( s-1\right ) ^{4}}-\frac{4s}{\left ( s-1\right ) ^{4}}+\frac{7}{\left ( s-1\right ) ^{4}} \tag{2} \end{align}

But \begin{align*} \frac{s^{2}}{\left ( s-1\right ) ^{4}} & =\frac{\left ( s-1\right ) ^{2}-1+2s}{\left ( s-1\right ) ^{4}}\\ & =\frac{\left ( s-1\right ) ^{2}}{\left ( s-1\right ) ^{4}}-\frac{1}{\left ( s-1\right ) ^{4}}+2\frac{\left ( s-1\right ) +1}{\left ( s-1\right ) ^{4}}\\ & =\frac{1}{\left ( s-1\right ) ^{2}}-\frac{1}{\left ( s-1\right ) ^{4}}+2\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{4}}+2\frac{1}{\left ( s-1\right ) ^{4}}\\ & =\frac{1}{\left ( s-1\right ) ^{2}}-\frac{1}{\left ( s-1\right ) ^{4}}+2\frac{1}{\left ( s-1\right ) ^{3}}+2\frac{1}{\left ( s-1\right ) ^{4}}\\ & =\frac{1}{\left ( s-1\right ) ^{2}}+\frac{2}{\left ( s-1\right ) ^{3}}+\frac{1}{\left ( s-1\right ) ^{4}} \end{align*}

And\begin{align*} \frac{4s}{\left ( s-1\right ) ^{4}} & =4\frac{\left ( s-1\right ) +1}{\left ( s-1\right ) ^{4}}\\ & =4\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{4}}+4\frac{1}{\left ( s-1\right ) ^{4}}\\ & =\frac{4}{\left ( s-1\right ) ^{3}}+\frac{4}{\left ( s-1\right ) ^{4}} \end{align*}

Therefore (2) becomes\begin{align} Y\left ( s\right ) & =\left ( \frac{1}{\left ( s-1\right ) ^{2}}+\frac{2}{\left ( s-1\right ) ^{3}}+\frac{1}{\left ( s-1\right ) ^{4}}\right ) -\left ( \frac{4}{\left ( s-1\right ) ^{3}}+\frac{4}{\left ( s-1\right ) ^{4}}\right ) +\frac{7}{\left ( s-1\right ) ^{4}}\nonumber \\ & =\frac{1}{\left ( s-1\right ) ^{2}}-\frac{2}{\left ( s-1\right ) ^{3}}+\frac{4}{\left ( s-1\right ) ^{4}} \tag{3} \end{align}

Now using property the shift property of \(F\left ( s\right ) \) together with\begin{align*} \frac{1}{s^{2}} & \Longleftrightarrow t\\ \frac{1}{s^{3}} & \Longleftrightarrow \frac{t^{2}}{2}\\ \frac{1}{s^{4}} & \Longleftrightarrow \frac{t^{3}}{6} \end{align*}

Therefore\begin{align*} \frac{1}{\left ( s-1\right ) ^{2}} & \Longleftrightarrow e^{t}t\\ \frac{1}{\left ( s-1\right ) ^{3}} & \Longleftrightarrow e^{t}\frac{t^{2}}{2}\\ \frac{1}{\left ( s-1\right ) ^{4}} & \Longleftrightarrow e^{t}\frac{t^{3}}{6} \end{align*}

And (3) becomes\begin{align*} \frac{1}{\left ( s-1\right ) ^{2}}-\frac{2}{\left ( s-1\right ) ^{3}}+\frac{4}{\left ( s-1\right ) ^{4}} & \Longleftrightarrow e^{t}t-2\left ( e^{t}\frac{t^{2}}{2}\right ) +4\left ( e^{t}\frac{t^{3}}{6}\right ) \\ & =e^{t}t-e^{t}t^{2}+\frac{2}{3}e^{t}t^{3} \end{align*}

Hence\[ y\left ( t\right ) =e^{t}\left ( t-t^{2}+\frac{2}{3}t^{3}\right ) \]

2.10.6 Section 6.2 problem 18

Use Laplace transform to solve \(y^{\left ( 4\right ) }-y=0\) for \(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0,y^{\prime \prime }\left ( 0\right ) =1,y^{\prime \prime \prime }\left ( 0\right ) =0\)

Solution Taking Laplace transform of the ODE gives\begin{equation} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} -\mathcal{L}\left \{ y\right \} =0 \tag{1} \end{equation} Let \(\mathcal{L}\left \{ y\right \} =Y\left ( s\right ) \) then\begin{align*} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} & =s^{4}Y\left ( s\right ) -s^{3}y\left ( 0\right ) -s^{2}y^{\prime }\left ( 0\right ) -sy^{\prime \prime }\left ( 0\right ) -y^{\prime \prime \prime }\left ( 0\right ) \\ & =s^{4}Y\left ( s\right ) -s^{3}\left ( 1\right ) -s^{2}\left ( 0\right ) -s\left ( 1\right ) -0\\ & =s^{4}Y\left ( s\right ) -s^{3}-s \end{align*}

Hence (1) becomes\[ s^{4}Y\left ( s\right ) -s^{3}-s-Y\left ( s\right ) =0 \] Solving for \(Y\left ( s\right ) \) gives\begin{align*} Y\left ( s\right ) & =\frac{s^{3}+s}{s^{4}-1}\\ & =\frac{s\left ( s^{2}+1\right ) }{s^{4}-1}\\ & =\frac{s\left ( s^{2}+1\right ) }{\left ( s^{2}-1\right ) \left ( s^{2}+1\right ) }\\ & =\frac{s}{s^{2}-1} \end{align*}

But, Hence above becomes, where \(a=1\)\[ \frac{s}{s^{2}-1}\Longleftrightarrow \cosh \left ( t\right ) \] Hence\[ y\left ( t\right ) =\cosh \left ( at\right ) \]

2.10.7 Section 6.2 problem 19

Use Laplace transform to solve \(y^{\left ( 4\right ) }-4y=0\) for \(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0,y^{\prime \prime }\left ( 0\right ) =-2,y^{\prime \prime \prime }\left ( 0\right ) =0\)

Solution Taking Laplace transform of the ODE gives\begin{equation} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} -4\mathcal{L}\left \{ y\right \} =0 \tag{1} \end{equation} Let \(\mathcal{L}\left \{ y\right \} =Y\left ( s\right ) \) then\begin{align*} \mathcal{L}\left \{ y^{\left ( 4\right ) }\right \} & =s^{4}Y\left ( s\right ) -s^{3}y\left ( 0\right ) -s^{2}y^{\prime }\left ( 0\right ) -sy^{\prime \prime }\left ( 0\right ) -y^{\prime \prime \prime }\left ( 0\right ) \\ & =s^{4}Y\left ( s\right ) -s^{3}\left ( 1\right ) -s^{2}\left ( 0\right ) -s\left ( -2\right ) -0\\ & =s^{4}Y\left ( s\right ) -s^{3}+2s \end{align*}

Hence (1) becomes\[ s^{4}Y\left ( s\right ) -s^{3}+2s-4Y\left ( s\right ) =0 \] Solving for \(Y\left ( s\right ) \) gives\begin{align*} Y\left ( s\right ) & =\frac{s^{3}-2s}{s^{4}-4}\\ & =\frac{s^{3}-2s}{\left ( s^{2}-2\right ) \left ( s^{2}+2\right ) }\\ & =\frac{s\left ( s^{2}-2\right ) }{\left ( s^{2}-2\right ) \left ( s^{2}+2\right ) }\\ & =\frac{s}{\left ( s^{2}+2\right ) } \end{align*}

Using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}},\) the above becomes, where \(a=\sqrt{2}\)\[ \frac{s}{\left ( s^{2}+2\right ) }\Longleftrightarrow \cos \left ( \sqrt{2}t\right ) \] Hence\[ y\left ( t\right ) =\cos \left ( \sqrt{2}t\right ) \]

2.10.8 Section 6.2 problem 20

Use Laplace transform to solve \(y^{\prime \prime }+\omega ^{2}y=\cos 2t;\) \(\omega ^{2}\neq 4;\) \(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0\)

Solution Let \(Y\left ( s\right ) =\mathcal{L}\left \{ y\left ( t\right ) \right \} \). Taking Laplace transform of the ODE, and using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}}\) gives\begin{equation} s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) +\omega ^{2}Y\left ( s\right ) =\frac{s}{s^{2}+4} \tag{1} \end{equation} Applying initial conditions\[ s^{2}Y\left ( s\right ) -s+\omega ^{2}Y\left ( s\right ) =\frac{s}{s^{2}+4}\] Solving for \(Y\left ( s\right ) \)\begin{align} Y\left ( s\right ) \left ( s^{2}+\omega ^{2}\right ) -s & =\frac{s}{s^{2}+4}\nonumber \\ Y\left ( s\right ) & =\frac{s}{\left ( s^{2}+4\right ) \left ( s^{2}+\omega ^{2}\right ) }+\frac{s}{\left ( s^{2}+\omega ^{2}\right ) } \tag{2} \end{align}

But \begin{align*} \frac{s}{\left ( s^{2}+4\right ) \left ( s^{2}+\omega ^{2}\right ) } & =\frac{As+B}{\left ( s^{2}+4\right ) }+\frac{Cs+D}{\left ( s^{2}+\omega ^{2}\right ) }\\ s & =\left ( As+B\right ) \left ( s^{2}+\omega ^{2}\right ) +\left ( Cs+D\right ) \left ( s^{2}+4\right ) \\ s & =4D+As^{3}+Bs^{2}+Cs^{3}+B\omega ^{2}+s^{2}D+4Cs+As\omega ^{2}\allowbreak \\ s & =\left ( 4D+B\omega ^{2}\right ) +s\left ( 4C+A\omega ^{2}\right ) +s^{2}\left ( B+D\right ) +s^{3}\left ( A+C\right ) \end{align*}

Hence \begin{align*} 4D+B\omega ^{2} & =0\\ 4C+A\omega ^{2} & =1\\ B+D & =0\\ A+C & =0 \end{align*}

Equation (2,4) gives  \(A=\frac{1}{\omega ^{2}-4},C=\frac{1}{4-\omega ^{2}}\) and (1,3) gives \(B=0,D=0\). Hence\[ \frac{s}{\left ( s^{2}+4\right ) \left ( s^{2}+\omega ^{2}\right ) }=\left ( \frac{1}{\omega ^{2}-4}\right ) \frac{s}{\left ( s^{2}+4\right ) }+\left ( \frac{1}{4-\omega ^{2}}\right ) \frac{s}{\left ( s^{2}+\omega ^{2}\right ) }\] Therefore (2) becomes\begin{align*} Y\left ( s\right ) & =\left ( \frac{1}{\omega ^{2}-4}\right ) \frac{s}{\left ( s^{2}+4\right ) }+\left ( \frac{1}{4-\omega ^{2}}\right ) \frac{s}{\left ( s^{2}+\omega ^{2}\right ) }+\frac{s}{\left ( s^{2}+\omega ^{2}\right ) }\\ & =\left ( \frac{1}{\omega ^{2}-4}\right ) \frac{s}{\left ( s^{2}+4\right ) }+\left ( \frac{5-\omega ^{2}}{4-\omega ^{2}}\right ) \frac{s}{\left ( s^{2}+\omega ^{2}\right ) } \end{align*}

Using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}}\), the above becomes\begin{align*} \left ( \frac{1}{\omega ^{2}-4}\right ) \frac{s}{\left ( s^{2}+4\right ) }+\left ( \frac{5-\omega ^{2}}{4-\omega ^{2}}\right ) \frac{s}{\left ( s^{2}+\omega ^{2}\right ) } & \Longleftrightarrow \left ( \frac{1}{\omega ^{2}-4}\right ) \cos \left ( 2t\right ) +\left ( \frac{5-\omega ^{2}}{4-\omega ^{2}}\right ) \cos \left ( \omega t\right ) \\ & =\left ( \frac{1}{\omega ^{2}-4}\right ) \cos \left ( 2t\right ) +\left ( \frac{\omega ^{2}-5}{\omega ^{2}-4}\right ) \cos \left ( \omega t\right ) \end{align*}

Hence\begin{align*} y\left ( t\right ) & =\left ( \frac{1}{\omega ^{2}-4}\right ) \cos \left ( 2t\right ) +\left ( \frac{\omega ^{2}-5}{\omega ^{2}-4}\right ) \cos \left ( \omega t\right ) \\ & =\frac{\left ( \omega ^{2}-5\right ) \cos \left ( \omega t\right ) +\cos \left ( 2t\right ) }{\omega ^{2}-4} \end{align*}

2.10.9 Section 6.2 problem 21

Use Laplace transform to solve \(y^{\prime \prime }-2y^{\prime }+2y=\cos t;\) \(y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =0\)

Solution Let \(Y\left ( s\right ) =\mathcal{L}\left \{ y\left ( t\right ) \right \} \). Taking Laplace transform of the ODE, and using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}}\) gives\begin{equation} \left ( s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) \right ) -2\left ( sY\left ( s\right ) -y\left ( 0\right ) \right ) +2Y\left ( s\right ) =\frac{s}{s^{2}+1} \tag{1} \end{equation} Applying initial conditions\[ s^{2}Y\left ( s\right ) -s-2\left ( sY\left ( s\right ) -1\right ) +2Y\left ( s\right ) =\frac{s}{s^{2}+1}\] Solving for \(Y\left ( s\right ) \)\begin{align} s^{2}Y\left ( s\right ) -s-2sY\left ( s\right ) +2+2Y\left ( s\right ) & =\frac{s}{s^{2}+1}\nonumber \\ Y\left ( s\right ) \left ( s^{2}-2s+2\right ) -s+2 & =\frac{s}{s^{2}+1}\nonumber \\ Y\left ( s\right ) & =\frac{s}{\left ( s^{2}+1\right ) \left ( s^{2}-2s+2\right ) }+\frac{s}{\left ( s^{2}-2s+2\right ) }-\frac{2}{\left ( s^{2}-2s+2\right ) } \tag{2} \end{align}

But \begin{align*} \frac{s}{\left ( s^{2}+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{As+B}{\left ( s^{2}+1\right ) }+\frac{Cs+D}{s^{2}-2s+2}\\ s & =\left ( As+B\right ) \left ( s^{2}-2s+2\right ) +\left ( Cs+D\right ) \left ( s^{2}+1\right ) \\ s & =2B+D-2As^{2}+As^{3}+Bs^{2}+Cs^{3}+s^{2}D+2As-\allowbreak 2Bs+Cs\\ s & =\left ( 2B+D\right ) +s\left ( 2A-2B+C\right ) +s^{2}\left ( -2A+B+D\right ) +s^{3}\left ( A+C\right ) \end{align*}

Hence\begin{align*} 2B+D & =0\\ 2A-2B+C & =1\\ -2A+B+D & =0\\ A+C & =0 \end{align*}

Solving gives \(A=\frac{1}{5},B=-\frac{2}{5},C=-\frac{1}{5},D=\frac{4}{5}\), hence\begin{align} \frac{s}{\left ( s^{2}+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{1}{5}\frac{s-2}{\left ( s^{2}+1\right ) }-\frac{1}{5}\frac{s-4}{s^{2}-2s+2}\nonumber \\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{s}{s^{2}-2s+2}+\frac{4}{5}\frac{1}{s^{2}-2s+2} \tag{3} \end{align}

Completing the squares for \begin{align*} s^{2}-2s+2 & =a\left ( s+b\right ) ^{2}+d\\ & =a\left ( s^{2}+b^{2}+2bs\right ) +d\\ & =as^{2}+ab^{2}+2abs+d \end{align*}

Hence \(a=1,2ab=-2,\left ( ab^{2}+d\right ) =2\), hence \(b=-1,d=1\), hence\[ s^{2}-2s+2=\left ( s-1\right ) ^{2}+1 \] Hence (3) becomes\begin{align*} \frac{s}{\left ( s^{2}+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{s}{\left ( s-1\right ) ^{2}+1}+\frac{4}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) +1}{\left ( s-1\right ) ^{2}+1}+\frac{4}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}-\frac{1}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{4}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1} \end{align*}

Therefore (2) becomes\begin{align*} Y\left ( s\right ) & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{s}{\left ( s-1\right ) ^{2}+1}-\frac{2}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{\left ( s-1\right ) +1}{\left ( s-1\right ) ^{2}+1}-\frac{2}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{1}{\left ( s-1\right ) ^{2}+1}-\frac{2}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{s}{s^{2}+1}-\frac{2}{5}\frac{1}{s^{2}+1}+\frac{4}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}-\frac{2}{5}\frac{1}{\left ( s-1\right ) ^{2}+1} \end{align*}

Using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}},\sin \left ( at\right ) \Longleftrightarrow \frac{a}{s^{2}+a^{2}}\) and the shift property of Laplace transform, then\begin{align*} \frac{1}{5}\frac{s}{s^{2}+1} & \Longleftrightarrow \frac{1}{5}\cos \left ( t\right ) \\ \frac{2}{5}\frac{1}{s^{2}+1} & \Longleftrightarrow \frac{2}{5}\sin \left ( t\right ) \\ \frac{4}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1} & \Longleftrightarrow \frac{4}{5}e^{t}\cos t\\ \frac{2}{5}\frac{1}{\left ( s-1\right ) ^{2}+1} & \Longleftrightarrow \frac{8}{5}e^{t}\sin t \end{align*}

Hence\begin{align*} y\left ( t\right ) & =\frac{1}{5}\cos \left ( t\right ) -\frac{2}{5}\sin \left ( t\right ) +\frac{4}{5}e^{t}\cos t-\frac{2}{5}e^{t}\sin t\\ & \frac{1}{5}\left ( \cos t-2\sin t+4e^{t}\cos t-2e^{t}\sin t\right ) \end{align*}

2.10.10 Section 6.2 problem 22

Use Laplace transform to solve \(y^{\prime \prime }-2y^{\prime }+2y=e^{-t};y\left ( 0\right ) =0,y^{\prime }\left ( 0\right ) =1\)

Solution Let \(Y\left ( s\right ) =\mathcal{L}\left \{ y\left ( t\right ) \right \} \). Taking Laplace transform of the ODE, and using \(e^{-t}\Longleftrightarrow \frac{1}{s+1}\) gives\begin{equation} \left ( s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) \right ) -2\left ( sY\left ( s\right ) -y\left ( 0\right ) \right ) +2Y\left ( s\right ) =\frac{1}{s+1} \tag{1} \end{equation} Applying initial conditions gives\[ s^{2}Y\left ( s\right ) -1-2sY\left ( s\right ) +2Y\left ( s\right ) =\frac{1}{s+1}\] Solving for \(Y\left ( s\right ) \)\begin{align} Y\left ( s\right ) \left ( s^{2}-2s+2\right ) -1 & =\frac{1}{s+1}\nonumber \\ Y\left ( s\right ) & =\frac{1}{\left ( s+1\right ) \left ( s^{2}-2s+2\right ) }+\frac{1}{s^{2}-2s+2} \tag{2} \end{align}

But \begin{align*} \frac{1}{\left ( s+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{A}{s+1}+\frac{Bs+C}{s^{2}-2s+2}\\ 1 & =A\left ( s^{2}-2s+2\right ) +\left ( Bs+C\right ) \left ( s+1\right ) \\ 1 & =2A+C+As^{2}+Bs^{2}-2As+Bs+Cs\\ 1 & =\left ( 2A+C\right ) +s\left ( -2A+B+C\right ) +s^{2}\left ( A+B\right ) \end{align*}

Hence\begin{align*} 1 & =2A+C\\ 0 & =-2A+B+C\\ 0 & =A+B \end{align*}

Solving gives \(A=\frac{1}{5},B=-\frac{1}{5},C=\frac{3}{5}\), therefore\begin{align*} \frac{1}{\left ( s+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{1}{5}\frac{1}{s+1}+\frac{-\frac{1}{5}s+\frac{3}{5}}{s^{2}-2s+2}\\ & =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{s}{s^{2}-2s+2}++\frac{3}{5}\frac{1}{s^{2}-2s+2} \end{align*}

Completing the square for \(s^{2}-2s+2\) which was done in last problem, gives \(\left ( s-1\right ) ^{2}+1\), hence the above becomes\begin{align*} \frac{1}{\left ( s+1\right ) \left ( s^{2}-2s+2\right ) } & =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{s}{\left ( s-1\right ) ^{2}+1}++\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{\left ( s-1\right ) +1}{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}-\frac{1}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{3}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}\\ & =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{2}{5}\frac{1}{\left ( s-1\right ) ^{2}+1} \end{align*}

Therefore (2) becomes\[ Y\left ( s\right ) =\frac{1}{5}\frac{1}{s+1}-\frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1}+\frac{2}{5}\frac{1}{\left ( s-1\right ) ^{2}+1}+\frac{1}{\left ( s-1\right ) ^{2}+1}\] Using \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}},\sin \left ( at\right ) \Longleftrightarrow \frac{a}{s^{2}+a^{2}}\) and the shift property of Laplace transform, then\begin{align*} \frac{1}{5}\frac{1}{s+1} & \Longleftrightarrow \frac{1}{5}e^{-t}\\ \frac{1}{5}\frac{\left ( s-1\right ) }{\left ( s-1\right ) ^{2}+1} & \Longleftrightarrow \frac{1}{5}e^{t}\cos t\\ \frac{2}{5}\frac{1}{\left ( s-1\right ) ^{2}+1} & \Longleftrightarrow \frac{2}{5}e^{t}\sin t\\ \frac{1}{\left ( s-1\right ) ^{2}+1} & \Longleftrightarrow e^{t}\sin t \end{align*}

Hence\begin{align*} y\left ( t\right ) & =\frac{1}{5}e^{-t}-\frac{1}{5}e^{t}\cos t+\frac{2}{5}e^{t}\sin t+e^{t}\sin t\\ & =\frac{1}{5}\left ( e^{-t}-e^{t}\cos t+7e^{t}\sin t\right ) \end{align*}

2.10.11 Section 6.2 problem 23

Use Laplace transform to solve \(y^{\prime \prime }+2y^{\prime }+y=4e^{-t};y\left ( 0\right ) =2,y^{\prime }\left ( 0\right ) =-1\)

Solution Let \(Y\left ( s\right ) =\mathcal{L}\left \{ y\left ( t\right ) \right \} \). Taking Laplace transform of the ODE, and using \(e^{-t}\Longleftrightarrow \frac{1}{s+1}\) gives\begin{equation} \left ( s^{2}Y\left ( s\right ) -sy\left ( 0\right ) -y^{\prime }\left ( 0\right ) \right ) +2\left ( sY\left ( s\right ) -y\left ( 0\right ) \right ) +Y\left ( s\right ) =\frac{4}{s+1} \tag{1} \end{equation} Applying initial conditions gives\[ \left ( s^{2}Y\left ( s\right ) -2s+1\right ) +2\left ( sY\left ( s\right ) -2\right ) +Y\left ( s\right ) =\frac{4}{s+1}\] Solving for \(Y\left ( s\right ) \)\begin{align*} Y\left ( s\right ) \left ( s^{2}+2s+1\right ) -2s+1-4 & =\frac{4}{s+1}\\ Y\left ( s\right ) \left ( s^{2}+2s+1\right ) & =\frac{4}{s+1}+2s-1+4\\ Y\left ( s\right ) & =\frac{4}{\left ( s+1\right ) \left ( s^{2}+2s+1\right ) }+\frac{2s}{\left ( s^{2}+2s+1\right ) }-\frac{1}{\left ( s^{2}+2s+1\right ) }+\frac{4}{\left ( s^{2}+2s+1\right ) } \end{align*}

But \(\left ( s^{2}+2s+1\right ) =\left ( s+1\right ) ^{2}\), hence\begin{equation} Y\left ( s\right ) =\frac{4}{\left ( s+1\right ) ^{3}}+\frac{2s}{\left ( s+1\right ) ^{2}}-\frac{1}{\left ( s+1\right ) ^{2}}+\frac{4}{\left ( s+1\right ) ^{2}} \tag{2} \end{equation} But \begin{align*} \frac{2s}{\left ( s+1\right ) ^{2}} & =2\frac{s+1-1}{\left ( s+1\right ) ^{2}}\\ & =2\frac{\left ( s+1\right ) }{\left ( s+1\right ) ^{2}}-2\frac{1}{\left ( s+1\right ) ^{2}}\\ & =2\frac{1}{s+1}-2\frac{1}{\left ( s+1\right ) ^{2}} \end{align*}

Hence (2) becomes\begin{equation} Y\left ( s\right ) =\frac{4}{\left ( s+1\right ) ^{3}}+2\frac{1}{s+1}-2\frac{1}{\left ( s+1\right ) ^{2}}-\frac{1}{\left ( s+1\right ) ^{2}}+\frac{4}{\left ( s+1\right ) ^{2}} \tag{3} \end{equation} We now ready to do the inversion. Since \(\frac{1}{s^{3}}\Longleftrightarrow \frac{t^{2}}{2}\) and \(\frac{1}{s^{2}}\Longleftrightarrow t\) and \(\frac{1}{s}\Longleftrightarrow 1\) and using the shift property \(e^{at}f\left ( t\right ) \Longleftrightarrow F\left ( s-a\right ) \), then using these into (3) gives\begin{align*} \frac{4}{\left ( s+1\right ) ^{3}} & \Longleftrightarrow 4e^{-t}\left ( \frac{t^{2}}{2}\right ) \\ 2\frac{1}{s+1} & \Longleftrightarrow 2e^{-t}\\ 2\frac{1}{\left ( s+1\right ) ^{2}} & \Longleftrightarrow 2e^{-t}t\\ \frac{1}{\left ( s+1\right ) ^{2}} & \Longleftrightarrow e^{-t}t\\ \frac{4}{\left ( s+1\right ) ^{2}} & \Longleftrightarrow 4e^{-t}t \end{align*}

Now (3) becomes\begin{align*} Y\left ( s\right ) & \Longleftrightarrow 4e^{-t}\left ( \frac{t^{2}}{2}\right ) +2e^{-t}-2e^{-t}t-e^{-t}t+4e^{-t}t\\ & =e^{-t}\left ( 2t^{2}+2-2t-t+4t\right ) \\ & =e^{-t}\left ( 2t^{2}+t+2\right ) \end{align*}

2.10.12 Section 6.3 problem 25

   2.10.12.1 Part (a)
   2.10.12.2 Part (b)
   2.10.12.3 Part (c)

Suppose that \(F\left ( s\right ) =\mathcal{L}\left \{ f\left ( t\right ) \right \} \) exists for \(s>a\geq 0.\)

1.
Show that if \(c\) is positive constant then \(\mathcal{L}\left \{ f\left ( ct\right ) \right \} =\frac{1}{c}F\left ( \frac{s}{c}\right ) \) for \(s>ca\)
2.
Show that if \(k\) is positive constant then \(\mathcal{L}^{-1}\left \{ F\left ( ks\right ) \right \} =\frac{1}{k}f\left ( \frac{t}{k}\right ) \)
3.
Show that if \(a,b\) are constants with \(a>0\) then \(\mathcal{L}^{-1}\left \{ F\left ( as+b\right ) \right \} =\frac{1}{a}e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) \)

Solution

2.10.12.1 Part (a)

From definition, \[\mathcal{L}\left \{ f\left ( ct\right ) \right \} =\int _{0}^{\infty }f\left ( ct\right ) e^{-st}dt \] Let \(ct=\tau \), then when \(t=0,\tau =0\) and when \(t=\infty ,\tau =\infty \), and \(c=\frac{d\tau }{dt}.\) Hence the above becomes\begin{align*} \mathcal{L}\left \{ f\left ( ct\right ) \right \} & =\int _{0}^{\infty }f\left ( \tau \right ) e^{-s\left ( \frac{\tau }{c}\right ) }\frac{d\tau }{c}\\ & =\frac{1}{c}\int _{0}^{\infty }f\left ( \tau \right ) e^{-\tau \left ( \frac{s}{c}\right ) }d\tau \end{align*}

We see from above that \(\mathcal{L}\left \{ f\left ( ct\right ) \right \} \) is \(\frac{1}{c}F\left ( \frac{s}{c}\right ) .\)Now we look at the conditions which makes the above integral converges. Let \[ \left \vert f\left ( \tau \right ) e^{-\tau \left ( \frac{s}{c}\right ) }\right \vert \leq k\left \vert e^{at}e^{-\tau \left ( \frac{s}{c}\right ) }\right \vert \] Where \(k\) is some constant. Then\begin{align*} \int _{0}^{\infty }f\left ( t\right ) e^{-t\left ( \frac{s}{c}\right ) }dt & \leq k\int _{0}^{\infty }e^{at}e^{-t\left ( \frac{s}{c}\right ) }dt\\ & =k\int _{0}^{\infty }e^{-t\left ( \frac{s}{c}-a\right ) }dt \end{align*}

But \(\int _{0}^{\infty }e^{-t\left ( \frac{s}{c}-a\right ) }d\tau \) converges if \(\frac{s}{c}-a>0\) or \[ s>ca \] Hence this is the condition for \(\int _{0}^{\infty }f\left ( t\right ) e^{-t\left ( \frac{s}{c}\right ) }dt\) to converge. Which is what we required to show.

2.10.12.2 Part (b)

From definition\begin{align*} \mathcal{L}\left \{ \frac{1}{k}f\left ( \frac{t}{k}\right ) \right \} & =\frac{1}{k}\mathcal{L}\left \{ f\left ( \frac{t}{k}\right ) \right \} \\ & =\frac{1}{k}\int _{0}^{\infty }f\left ( \frac{t}{k}\right ) e^{-st}dt \end{align*}

Let \(\frac{t}{k}=\tau \). When \(t=0,\tau =0\) and when \(t=\infty ,\tau =\infty \). \(\frac{dt}{d\tau }=k\), hence the above becomes\begin{align*} \mathcal{L}\left \{ \frac{1}{k}f\left ( \frac{t}{k}\right ) \right \} & =\frac{1}{k}\int _{0}^{\infty }f\left ( \tau \right ) e^{-s\left ( k\tau \right ) }\left ( kd\tau \right ) \\ & =\int _{0}^{\infty }f\left ( \tau \right ) e^{-\tau \left ( sk\right ) }d\tau \end{align*}

We see from above that \(\mathcal{L}\left \{ \frac{1}{k}f\left ( \frac{t}{k}\right ) \right \} \) is \(F\left ( sk\right ) \). In other words, \(\mathcal{L}^{-1}\left \{ F\left ( ks\right ) \right \} =\frac{1}{k}f\left ( \frac{t}{k}\right ) \).

2.10.12.3 Part (c)

From definition\begin{align*} \mathcal{L}\left \{ \frac{1}{a}e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) \right \} & =\frac{1}{a}\mathcal{L}\left \{ e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) \right \} \\ & =\frac{1}{a}\int _{0}^{\infty }e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) e^{-st}dt \end{align*}

Let \(\frac{t}{a}=\tau \), at \(t=0,\tau =0\) and at \(t=\infty ,\tau =\infty \). And \(\frac{dt}{d\tau }=a\), hence the above becomes\begin{align*} \mathcal{L}\left \{ \frac{1}{a}e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) \right \} & =\frac{1}{a}\int _{0}^{\infty }e^{\frac{-b\left ( a\tau \right ) }{a}}f\left ( \tau \right ) e^{-s\left ( a\tau \right ) }\left ( ad\tau \right ) \\ & =\int _{0}^{\infty }e^{-b\tau }f\left ( \tau \right ) e^{-\tau \left ( sa\right ) }d\tau \\ & =\int _{0}^{\infty }f\left ( \tau \right ) e^{-\tau \left ( sa+b\right ) }d\tau \end{align*}

We see from the above, that \(\mathcal{L}\left \{ \frac{1}{a}e^{\frac{-bt}{a}}f\left ( \frac{t}{a}\right ) \right \} =F\left ( sa+b\right ) \). Now we look at the conditions which makes the above integral converges. Let \[ \left \vert f\left ( \tau \right ) e^{-t\left ( sa+b\right ) }\right \vert \leq k\left \vert e^{at}e^{-t\left ( sa+b\right ) }\right \vert \] Where \(k\) is some constant. Then\begin{align*} \int _{0}^{\infty }f\left ( t\right ) e^{-t\left ( sa+b\right ) }dt & \leq k\int _{0}^{\infty }e^{at}e^{-t\left ( sa+b\right ) }dt\\ & =k\int _{0}^{\infty }e^{-t\left ( sa+b-a\right ) }dt \end{align*}

But \(\int _{0}^{\infty }e^{-t\left ( sa+b-a\right ) }dt\) converges if \(sa+b-a>0\) or \(sa>a-b\) or \(s>1-\frac{b}{a}\)

2.10.13 Section 6.3 problem 26

Find inverse Laplace transform of \(F\left ( s\right ) =\frac{2^{n+1}n!}{s^{n+1}}\)

Solution

We know from tables that \[ \frac{n!}{s^{n+1}}\Longleftrightarrow t^{n}\] Hence\begin{align*} 2^{n+1}\frac{n!}{s^{n+1}} & \Longleftrightarrow 2^{n+1}t^{n}\\ & =2\left ( 2t\right ) ^{n} \end{align*}

2.10.14 Section 6.3 problem 27

Find inverse Laplace transform of \(F\left ( s\right ) =\frac{2s+1}{4s^{2}+4s+5}\)

Solution \[ F\left ( s\right ) =\frac{2s}{4s^{2}+4s+5}+\frac{1}{4s^{2}+4s+5}\] But \(4s^{2}+4s+5=4\left ( s+\frac{1}{2}\right ) ^{2}+4\), hence\begin{align} F\left ( s\right ) & =\frac{2s}{4\left ( s+\frac{1}{2}\right ) ^{2}+4}+\frac{1}{4\left ( s+\frac{1}{2}\right ) ^{2}+4}\nonumber \\ & =\frac{s}{2\left ( s+\frac{1}{2}\right ) ^{2}+2}+\frac{1}{4}\frac{1}{\left ( s+\frac{1}{2}\right ) ^{2}+1}\nonumber \\ & =\frac{1}{2}\frac{s}{\left ( s+\frac{1}{2}\right ) ^{2}+1}+\frac{1}{4}\frac{1}{\left ( s+\frac{1}{2}\right ) ^{2}+1}\nonumber \\ & =\frac{1}{2}\frac{s+\frac{1}{2}-\frac{1}{2}}{\left ( s+\frac{1}{2}\right ) ^{2}+1}+\frac{1}{4}\frac{1}{\left ( s+\frac{1}{2}\right ) ^{2}+1}\nonumber \\ & =\frac{1}{2}\frac{s+\frac{1}{2}}{\left ( s+\frac{1}{2}\right ) ^{2}+1}-\frac{1}{4}\frac{1}{\left ( s+\frac{1}{2}\right ) ^{2}+1}+\frac{1}{4}\frac{1}{\left ( s+\frac{1}{2}\right ) ^{2}+1}\nonumber \\ & =\frac{1}{2}\frac{s+\frac{1}{2}}{\left ( s+\frac{1}{2}\right ) ^{2}+1} \tag{1} \end{align}

Now we ready to do the inversion. Using \(e^{-at}f\left ( t\right ) \Longleftrightarrow F\left ( s+a\right ) \) and using \(\sin \left ( at\right ) \Longleftrightarrow \frac{a}{s^{2}+a^{2}}\), and \(\cos \left ( at\right ) \Longleftrightarrow \frac{s}{s^{2}+a^{2}}\)then\[ \frac{1}{2}\frac{s+\frac{1}{2}}{\left ( s+\frac{1}{2}\right ) ^{2}+1}\Longleftrightarrow \frac{1}{2}e^{-\frac{1}{2}t}\cos \left ( t\right ) \] Hence\[ f\left ( t\right ) =\frac{1}{2}e^{-\frac{1}{2}t}\cos \left ( t\right ) \]

2.10.15 Section 6.3 problem 28

Find inverse Laplace transform of \(F\left ( s\right ) =\frac{1}{9s^{2}-12s+3}\)

Solution\[ \frac{1}{9s^{2}-12s+3}=\frac{1}{9}\frac{1}{s^{2}-\frac{4}{3}s+\frac{1}{3}}=\frac{1}{9}\frac{1}{\left ( s-1\right ) \left ( s-\frac{1}{3}\right ) }\] But \begin{align*} \frac{1}{\left ( s-1\right ) \left ( s-\frac{1}{3}\right ) } & =\frac{A}{s-1}+\frac{B}{s-\frac{1}{3}}\\ A & =\left ( \frac{1}{\left ( s-\frac{1}{3}\right ) }\right ) _{s=1}=\frac{3}{2}\\ B & =\left ( \frac{1}{\left ( s-1\right ) }\right ) _{s=\frac{1}{3}}=-\frac{3}{2} \end{align*}

Hence\begin{equation} \frac{1}{9s^{2}-12s+3}=\frac{1}{9}\left ( \frac{3}{2}\frac{1}{s-1}-\frac{3}{2}\frac{1}{s-\frac{1}{3}}\right ) \tag{1} \end{equation} Using \[ e^{at}\Longleftrightarrow \frac{1}{s-a}\] Then (1) becomes\begin{align*} \frac{1}{9s^{2}-12s+3} & \Longleftrightarrow \frac{1}{9}\left ( \frac{3}{2}e^{t}-\frac{3}{2}e^{\frac{1}{3}t}\right ) \\ & =\frac{1}{6}e^{t}-\frac{1}{6}e^{\frac{1}{3}t}\\ & =\frac{1}{6}\left ( e^{t}-e^{\frac{1}{3}t}\right ) \end{align*}

2.10.16 Section 6.3 problem 29

Find inverse Laplace transform of \(F\left ( s\right ) =\frac{e^{2}e^{-4s}}{2s-1}\)

solution

\[ F\left ( s\right ) =\frac{e^{2}}{2}\frac{e^{-4s}}{s-\frac{1}{2}}\] Using \begin{equation} u_{c}\left ( t\right ) f\left ( t-c\right ) \Longleftrightarrow e^{-cs}F\left ( s\right ) \tag{1} \end{equation} Since \[ \frac{1}{s-\frac{1}{2}}\Longleftrightarrow e^{\frac{1}{2}t}\] Then using (1)\[ e^{-4s}\frac{1}{s-\frac{1}{2}}\Longleftrightarrow u_{4}\left ( t\right ) e^{\frac{1}{2}\left ( t-4\right ) }\] Hence\begin{align*} \frac{e^{2}}{2}\frac{e^{-4s}}{s-\frac{1}{2}} & \Longleftrightarrow \frac{e^{2}}{2}u_{4}\left ( t\right ) e^{\frac{1}{2}\left ( t-4\right ) }\\ & =\frac{1}{2}u_{4}\left ( t\right ) e^{\frac{1}{2}\left ( t-4\right ) +2}\\ & =\frac{1}{2}u_{4}\left ( t\right ) e^{\frac{1}{2}t-2+2}\\ & =\frac{1}{2}u_{4}\left ( t\right ) e^{\frac{t}{2}} \end{align*}

Therefore\[ f\left ( t\right ) =\frac{1}{2}u_{4}\left ( t\right ) e^{\frac{t}{2}}\] ps. Book answer is wrong. It gives\[ f\left ( t\right ) =\frac{1}{2}u_{4}\left ( \frac{t}{2}\right ) e^{\frac{t}{2}}\]

2.10.17 Section 6.3 problem 30

Find Laplace transform of \(f\left ( t\right ) =\left \{ \begin{array} [c]{ccc}1 & & 0\leq t<1\\ 0 & & t\geq 1 \end{array} \right . \)

solution

Writing \(f\left ( t\right ) \) in terms of Heaviside step function gives\[ f\left ( t\right ) =u_{0}\left ( t\right ) -u_{1}\left ( t\right ) \] Using\[ u_{c}\left ( t\right ) \Longleftrightarrow e^{-cs}\frac{1}{s}\] Therefore\begin{align*} \mathcal{L}\left \{ u_{0}\left ( t\right ) \right \} & =e^{-0s}\frac{1}{s}=\frac{1}{s}\\\mathcal{L}\left \{ u_{1}\left ( t\right ) \right \} & =e^{-s}\frac{1}{s} \end{align*}

Hence\begin{align*} \mathcal{L}\left \{ u_{0}\left ( t\right ) -u_{1}\left ( t\right ) \right \} & =\frac{1}{s}-e^{-s}\frac{1}{s}\\ & =\frac{1}{s}\left ( 1-e^{-s}\right ) \qquad s>0 \end{align*}

2.10.18 Section 6.3 problem 31

Find Laplace transform of \(f\left ( t\right ) =\left \{ \begin{array} [c]{ccc}1 & & 0\leq t<1\\ 0 & & 1\leq t<2\\ 1 & & 2\leq t<3\\ 0 & & t\geq 3 \end{array} \right . \)

solution

Writing \(f\left ( t\right ) \) in terms of Heaviside step function gives\[ f\left ( t\right ) =u_{0}\left ( t\right ) -u_{1}\left ( t\right ) +u_{2}\left ( t\right ) -u_{3}\left ( t\right ) \] Using\[ u_{c}\left ( t\right ) \Longleftrightarrow e^{-cs}\frac{1}{s}\] But \(f\left ( t\right ) =1\) in this case. Hence \(F\left ( s\right ) =\frac{1}{s}\). Therefore\begin{align*} f\left ( t\right ) & \Longleftrightarrow \frac{1}{s}e^{0s}-\frac{1}{s}e^{-s}+\frac{1}{s}e^{-2s}-\frac{1}{s}e^{-3s}\\ & =\frac{1}{s}\left ( 1-e^{-s}+e^{-2s}-e^{-3s}\right ) \qquad s>0 \end{align*}

2.10.19 Section 6.3 problem 32

Find Laplace transform of \(f\left ( t\right ) =1+\sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \)

solution

Using\[ u_{c}\left ( t\right ) \Longleftrightarrow e^{-cs}\frac{1}{s}\] Therefore\begin{align*} \mathcal{L}\left \{ 1+\sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} & =\mathcal{L}\left \{ 1\right \} +\mathcal{L}\left \{ \sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} \\ & =\frac{1}{s}+\sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}\frac{1}{s}e^{-ks}\\ & =\sum _{k=0}^{2n+1}\left ( -1\right ) ^{k}\frac{1}{s}e^{-ks}\\ & =\frac{1}{s}\sum _{k=0}^{2n+1}\left ( -e^{-s}\right ) ^{k} \end{align*}

Since \(\left \vert e^{-s}\right \vert <1\) the sum converges. Using \(\sum _{0}^{N}a_{n}=\left ( \frac{1-r^{N+1}}{1-r}\right ) \). Where \(\left \vert r\right \vert <1\). So the answer is\begin{align*} \mathcal{L}\left \{ 1+\sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} & =\frac{1}{s}\left ( \frac{1-\left ( -e^{-s}\right ) ^{2n+2}}{1-\left ( -e^{-s}\right ) }\right ) \\ & =\frac{1}{s}\left ( \frac{1-\left ( -e\right ) ^{-\left ( 2n+2\right ) s}}{1+e^{-s}}\right ) \end{align*}

Since \(2n+2\) is even then\[\mathcal{L}\left \{ 1+\sum _{k=1}^{2n+1}\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} =\frac{1}{s}\left ( \frac{1+e^{-\left ( 2n+2\right ) s}}{1+e^{-s}}\right ) \qquad s>0 \]

2.10.20 Section 6.3 problem 33

Find Laplace transform of \(f\left ( t\right ) =1+\sum _{k=1}^{\infty }\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \)

solution

Using\[ u_{c}\left ( t\right ) \Longleftrightarrow e^{-cs}\frac{1}{s}\] Therefore\begin{align*} \mathcal{L}\left \{ 1+\sum _{k=1}^{\infty }\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} & =\mathcal{L}\left \{ 1\right \} +\mathcal{L}\left \{ \sum _{k=1}^{\infty }\left ( -1\right ) ^{k}u_{k}\left ( t\right ) \right \} \\ & =\frac{1}{s}+\sum _{k=1}^{\infty }\left ( -1\right ) ^{k}\frac{1}{s}e^{-ks}\\ & =\frac{1}{s}+\frac{1}{s}\sum _{k=1}^{\infty }\left ( -1\right ) ^{k}e^{-ks}\\ & =\frac{1}{s}+\frac{1}{s}\sum _{k=1}^{\infty }\left ( -e^{-s}\right ) ^{k} \end{align*}

But \[ \sum _{k=1}^{\infty }r^{k}=\frac{r}{1-r}\qquad \left \vert r\right \vert <1 \] Since \(s>0\) then\(\left \vert e^{-s}\right \vert <1\). So the answer is\begin{align*} \frac{1}{s}+\frac{1}{s}\frac{-e^{-s}}{1-\left ( -e^{-s}\right ) } & =\frac{1}{s}-\frac{1}{s}\frac{e^{-s}}{1+e^{-s}}\\ & =\frac{1+e^{-s}-e^{-s}}{s\left ( 1+e^{-s}\right ) }\\ & =\frac{1}{s\left ( 1+e^{-s}\right ) }\qquad s>0 \end{align*}

2.10.21 Section 6.4 problem 21

   2.10.21.1 Part (a)
   2.10.21.2 Part (b)
   2.10.21.3 Part (c)
   2.10.21.4 Part(d)

pict

2.10.21.1 Part (a)

A plot of part (a) is the following

pict

And a plot of part(a) for problem 19 is the following

pict

We see the effect of having a \(2\) inside the sum. It extends the step \(u_{c}\left ( t\right ) \) function to negative side.

2.10.21.2 Part (b)

The easy way to do this, is to solve for each input term separately, and then add all the solutions, since this is a linear ODE. Once we solve for the first 2-3 terms, we will see the pattern to use for the overall solution. Since the input \(g\left ( t\right ) \) is \(u_{0}\left ( t\right ) +\sum _{k=1}^{\infty }\left ( -1\right ) ^{k}u_{k\pi }\left ( t\right ) \), we will first first the response to \(u_{0}\left ( t\right ) \,\), then for \(-u_{\pi }\left ( t\right ) \) then for \(+u_{2\pi }\left ( t\right ) \), and so on, and add them.

When the input is \(u_{0}\left ( t\right ) \), then its Laplace transform is \(\frac{1}{s}\), Hence, taking Laplace transform of the ODE gives (where now \(Y\left ( s\right ) =\mathcal{L}\left ( y\left ( t\right ) \right ) \))\[ \left ( s^{2}Y\left ( s\right ) -sy\left ( 0\right ) +y^{\prime }\left ( 0\right ) \right ) +Y\left ( s\right ) =\frac{1}{s}\] Applying initial conditions\[ s^{2}Y\left ( s\right ) +Y\left ( s\right ) =\frac{1}{s}\] Solving for \(Y_{0}\left ( s\right ) \) (called it \(Y_{0}\left ( s\right ) \,\) since the input is \(u_{0}\left ( t\right ) \))\begin{align*} Y_{0}\left ( s\right ) & =\frac{1}{s\left ( s^{2}+1\right ) }\\ & =\frac{1}{s}-\frac{s}{s^{2}+1} \end{align*}

Hence\[ y_{0}\left ( t\right ) =1-\cos t \] We now do the next input, which is \(-u_{\pi }\left ( t\right ) \), which has Laplace transform of \(-\frac{e^{-\pi s}}{s}\), therefore, following what we did above, we obtain now\begin{align*} Y_{\pi }\left ( s\right ) & =\frac{-e^{-\pi s}}{s\left ( s^{2}+1\right ) }\\ & =-e^{-\pi s}\left ( \frac{1}{s}-\frac{s}{s^{2}+1}\right ) \end{align*}

The effect of \(e^{-\pi s}\) is to cause delay in time. Hence the the inverse Laplace transform of the above is the same as \(y_{0}\left ( t\right ) \) but with delay \[ y_{\pi }\left ( t\right ) =-u_{\pi }\left ( t\right ) \left ( 1-\cos \left ( t-\pi \right ) \right ) \] Similarly, when the input is \(+u_{2\pi }\left ( t\right ) \), which which has Laplace transform of \(\frac{e^{-2\pi s}}{s}\), therefore, following what we did above, we obtain now\begin{align*} Y_{\pi }\left ( s\right ) & =\frac{e^{-2\pi s}}{s\left ( s^{2}+1\right ) }\\ & =e^{-2\pi s}\left ( \frac{1}{s}-\frac{s}{s^{2}+1}\right ) \end{align*}

The effect of \(e^{-2\pi s}\) is to cause delay in time. Hence the the inverse Laplace transform of the above is the same as \(y_{0}\left ( t\right ) \) but with now with delay of \(2\pi \), therefore\[ y_{2\pi }\left ( t\right ) =+u_{2\pi }\left ( t\right ) \left ( 1-\cos \left ( t-2\pi \right ) \right ) \] And so on. We see that if we add all the responses, we obtain\begin{align*} y\left ( t\right ) & =y_{0}\left ( t\right ) +y_{\pi }\left ( t\right ) +y_{2\pi }\left ( t\right ) +\cdots \\ & =\left ( 1-\cos t\right ) -u_{\pi }\left ( t\right ) \left ( 1-\cos \left ( t-\pi \right ) \right ) +u_{2\pi }\left ( t\right ) \left ( 1-\cos \left ( t-2\pi \right ) \right ) -\cdots \end{align*}

Or\begin{equation} y\left ( t\right ) =\left ( 1-\cos t\right ) +\sum _{k=1}^{n}\left ( -1\right ) ^{k}u_{k\pi }\left ( t\right ) \left ( 1-\cos \left ( t-k\pi \right ) \right ) \tag{1} \end{equation}

2.10.21.3 Part (c)

This is a plot of (1) for \(n=15\)

pict

We see the solution growing rapidly, they settling down after about \(t=50\) to sinusoidal wave at amplitude of about \(\pm 15\).  This shows the system reached steady state at around \(t=50\).

To compare it with problem 19 solution, I used the solution for 19 given in the book, and plotted both solution on top of each others. Also for up to \(t=60\). Here is the result

pict

We see that problem 19 output follows the same pattern (since same frequency is used), but with double the amplitude. This is due to the \(2\) factor used in problem 19 compared to this problem.

2.10.21.4 Part(d)

At first, I tried it with \(n=50,150,250,350,450,550.\) I can not see any noticeable change in the plot. Here is the result.

pict

Even at \(n=2000\) there was no change to be noticed.

pict

This shows additional input in the form of shifted unit steps, do not change the steady state solution.