Landing speed is v_{2}=4 m/sec.\begin{align*} U_{12} & =T_{2}-T_{1}\\ & =\frac{1}{2}mv_{2}^{2}-\frac{1}{2}mv_{1}^{2}\\ & =\frac{1}{2}m\left ( 4^{2}-\left ( 241\frac{1000}{km}\frac{hr}{3600}\right ) ^{2}\right ) \\ & =\frac{1}{2}70\left ( \left ( 4\right ) ^{2}-\left ( 241\left ( \frac{1000}{3600}\right ) \right ) ^{2}\right ) \\ & =-156294.6 \end{align*}
Hence work on person is -156.295 kJ
Force in the x direction is\begin{align*} F & =F_{p}-F_{friction}\\ & =\left ( 20+12x\right ) -\mu _{k}N\\ & =\left ( 20+12x\right ) -\left ( 0.4\right ) \left ( 32\right ) \end{align*}
Hence\begin{align*} U_{12} & =T_{2}-T_{1}\\ \int _{0}^{15}\bar{F}\cdot d\bar{r} & =\frac{1}{2}mv_{2}^{2}-\frac{1}{2}mv_{1}^{2}\\ \int _{0}^{15}\left ( \left ( 20+12x^{\frac{1}{2}}\right ) -\left ( 0.4\right ) \left ( 32\right ) \right ) dx & =\frac{1}{2}\frac{32}{32.2}v_{2}^{2} \end{align*}
Since v_{1}=0 then above becomes\begin{align*} \int _{0}^{15}\left ( \left ( 20+12x^{\frac{1}{2}}\right ) -\left ( 0.4\right ) \left ( 32\right ) \right ) dx & =\frac{1}{2}\left ( \frac{32}{32.2}\right ) v_{2}^{2}\\ \int _{0}^{15}12x^{\frac{1}{2}}+7.2dx & =0.49689v_{2}^{2}\\ \left ( \frac{\left ( 12\right ) \left ( 2\right ) }{3}x^{\frac{3}{2}}+7.2x\right ) _{0}^{15} & =0.49689v_{2}^{2}\\ \frac{\left ( 12\right ) \left ( 2\right ) }{3}\left ( 15\right ) ^{\frac{3}{2}}+7.2\left ( 15\right ) & =0.49689v_{2}^{2}\\ 572.758 & =0.49689v_{2}^{2}\\ v_{2}^{2} & =\frac{572.758}{0.49689}\\ & =1152.686 \end{align*}
Hence \begin{align*} v_{2} & =\sqrt{1152.686}\\ & =33.951\text{ ft/sec} \end{align*}
Since all forces we can use conservation of energy T_{1}+V_{1}=T_{2}+V_{2} Where V_{1}=0 since spring is not compressed yet and T_{2}=0 since the car would be stopped by then. Hence\begin{align*} \frac{1}{2}mv_{2}^{2} & =\frac{1}{2}k\Delta ^{2}\\ \Delta ^{2} & =\frac{mv_{2}^{2}}{k}\\ & =\frac{\left ( 1324\right ) \left ( 5.5\left ( \frac{1000}{km}\right ) \left ( \frac{hr}{3600}\right ) \right ) ^{2}}{9.4\times 10^{4}}\\ & =\frac{\left ( 1324\right ) \left ( 5.5\left ( \frac{1000}{3600}\right ) \right ) ^{2}}{9.4\times 10^{4}}\\ \Delta ^{2} & =0.033\text{ } \end{align*}
Hence \Delta =0.182\,\text{\ meter}
Distance is L=51 meter (not clear in problem image).
Taking zero PE at horizontal datum when car comes to a stop at the bottom of hill, then using T_{1}+V_{1}+U_{12}=T_{2}+V_{2}
Hence\begin{align*} \mu & =\frac{\frac{1}{2}\left ( 58\left ( \frac{1000}{3600}\right ) \right ) ^{2}+9.81\left ( 51\right ) \sin \left ( 21\left ( \frac{\pi }{180}\right ) \right ) }{\left ( 51\right ) \left ( 9.81\right ) \cos \left ( 21\left ( \frac{\pi }{180}\right ) \right ) }\\ & =\frac{129.784\,0+179.295\,1}{467.\,0796}\\ & =0.662 \end{align*}
T_{1}+V_{1}=T_{2}+V_{2}
Now let state 3 be when bob is up again on the other side. Hence we have T_{2}+V_{2}=T_{3}+V_{3}
\begin{align*} V & =\int ^{x}k\delta -\beta \delta ^{3}d\delta \\ & =\frac{kx^{2}}{2}-\frac{\beta x^{4}}{4} \end{align*}
Let datum be at top. Hence\begin{align*} T_{1}+V_{1,gravity}+V_{1,rope} & =T_{2}+V_{2,gravity}+V_{2,rope}\\ 0+0+0 & =\frac{1}{2}mv_{2}^{2}-mgh+\left ( \frac{k\delta ^{2}}{2}-\frac{\beta \delta ^{4}}{4}\right ) \\ v & =\sqrt{2gh-\frac{2}{m}\left ( \frac{k\delta ^{2}}{2}-\frac{\beta \delta ^{4}}{4}\right ) }\\ & =\sqrt{\frac{\beta \delta ^{4}-2kv^{2}+4mgh}{2m}}\\ & =\sqrt{\frac{\left ( 0.000014\right ) \left ( 150\right ) ^{4}-2\left ( 2.6\right ) \left ( 150\right ) ^{2}+4\left ( 170\right ) \left ( 150\right ) }{2\left ( \frac{170}{32.2}\right ) }}\\ & =\sqrt{-749.360\,3}\\ & =\sqrt{\frac{\left ( 0.000013\right ) \left ( 250\right ) ^{4}-2\left ( 2.58\right ) \left ( 250\right ) ^{2}+4\left ( 170\right ) \left ( 250\right ) }{2\left ( \frac{170}{32.2}\right ) }} \end{align*}
But \delta =h-150=400-150=250, hence\begin{align*} v & =\sqrt{\frac{\left ( 0.000014\right ) \left ( 250\right ) ^{4}-2\left ( 2.6\right ) \left ( 250\right ) ^{2}+4\left ( 170\right ) \left ( 400\right ) }{2\left ( \frac{170}{32.2}\right ) }}\\ & =12.64184\text{ ft/sec} \end{align*}
\delta =\sqrt{\frac{k}{3\beta }}=\sqrt{\frac{2.6}{3\left ( 0.000014\right ) }}=248.806\,7