Let state 1 be when the crate is thrown at the platform. Let the crate by body A and the platform be body B. We will use work-energy to solve this. T_{1}+V_{1}+U_{12}^{internal}+U_{12}^{external}=T_{2}+V_{2}
Let state 1 be just before release and state 2 after it moves by 1.5 meter
Therefore T_{1}+V_{1}+U_{12}^{internal}+U_{12}^{external}=T_{2}+V_{2}
Plug-in numerical values gives\begin{align*} m_{B} & =\frac{\left ( 4\right ) \left ( 1.3\right ) ^{2}+\left ( 9\right ) \left ( 1.5\right ) ^{2}}{2\left ( 9.81\right ) \left ( 1.5\right ) -\left ( 1.3\right ) ^{2}}\\ & =0.974\text{ kg} \end{align*}
Let state 1 be just before release and state 2 after it rotation.
T_{1}+V_{1}+U_{12}^{internal}+U_{12}^{external}=T_{2}+V_{2}
Now we solve for \omega and use it to find speed of B from v_{B}=L_{1}\omega . Since m_{A}=814,m_{B}=129,L_{1}=10,L_{2}=5,\alpha =36,\beta =110-36=74^{o} then\begin{align*} \omega & =\sqrt{2\frac{\left ( \left ( 814\right ) \left ( 32.2\right ) \left ( 5\right ) -\left ( 129\right ) \left ( 32.2\right ) \left ( 10\right ) \right ) \left ( \sin \left ( 36\left ( \frac{\pi }{180}\right ) \right ) +\sin \left ( 74\left ( \frac{\pi }{180}\right ) \right ) \right ) }{\left ( 129\right ) 10^{2}+\left ( 814\right ) 5^{2}}}\\ & =2.888\,\text{\ rad/sec} \end{align*}
Hence \begin{align*} v_{B} & =L_{1}\omega \\ & =10\left ( 2.888\right ) \\ & =28.88\text{ ft/sec} \end{align*}
Power P is
P=Fv
Where F is force generated by cyclist. From force balance we see that F=mg\sin \theta . Hence for constant power, we want
\left ( mg\sin 13^{0}\right ) v_{1}=\left ( mg\sin 20^{0}\right ) v_{2}
Solving for v_{2}
\begin{align*} v_{2} & =\frac{\left ( mg\sin 13^{0}\right ) v_{1}}{\left ( mg\sin 20^{0}\right ) }\\ & =\frac{\sin \left ( 13\left ( \frac{\pi }{180}\right ) \right ) }{\sin \left ( 20\left ( \frac{\pi }{180}\right ) \right ) }21\\ & =13.812\text{ mph} \end{align*}
\varepsilon =\frac{P_{out}}{P_{in}}
Where \varepsilon is the efficiency and P_{out} is power out and P_{in} is power in. But P_{out}=Fv_{c}. So we just need to find force in the cable that the motor is pulling with. This force is \frac{W}{4}, since there are 4 cables and hence the weight is distributed over them, and then the tension in the one cable attached to the motor is \frac{W}{4}. Now we have all the information to find \varepsilon
\begin{align*} P_{out} & =\left ( 4.5\right ) \left ( \frac{460}{4}\right ) \\ & =517.\,\allowbreak 5\text{ lb-ft/sec} \end{align*}
But hp=550 lb-ft/sec, therefore in hp the above is \frac{517.\,\allowbreak 5}{550}=\allowbreak 0.941, hence
\varepsilon =\frac{\allowbreak 0.941}{1.37}=0.687
\varepsilon =\frac{P_{out}}{P_{in}}
Mass of crate is \frac{216}{32.2} slug. (note, number given 216 is weight) These problem should make it more clear if lb given is meant to be weight or mass.
We need to find P_{in}. We are given \varepsilon . We now calculate P_{out} and then will be able to find P_{in}. But P_{out}=Fv, where F is force given by motor to pull the crate. From free body diagram, we see that this force is F=\mu mg\cos \theta +mg\sin \theta . Hence
\begin{align*} P_{out} & =\left ( \mu mg\cos \theta +mg\sin \theta \right ) v\\ & =mg\left ( \mu \cos \theta +\sin \theta \right ) v\\ & =\left ( \frac{216}{32.2}\right ) \left ( 32.2\right ) \left ( 0.24\cos \left ( 28\left ( \frac{\pi }{180}\right ) \right ) +\sin \left ( 28\left ( \frac{\pi }{180}\right ) \right ) \right ) \left ( 6.6\right ) \\ & =971.374\text{ lb-ft/sec}\\ & =\frac{971.374}{550}=1.\,766\text{ hp} \end{align*}
Hence
\begin{align*} P_{in} & =\frac{P_{out}}{\varepsilon }\\ & =\frac{1.\,766}{0.78}\\ & =2.264\text{ hp} \end{align*}