The before and after impact diagram is
Along the y direction\begin{align*} m_{A}v_{0}\cos \beta & =m_{A}v_{A_{y}}^{+}+m_{B}v_{B_{y}}^{+}\\ -e & =-1=\frac{v_{A_{y}}^{+}-v_{B_{y}}^{+}}{v_{A_{y}}^{-}-v_{B_{y}}^{-}}=\frac{v_{A_{y}}^{+}-v_{B_{y}}^{+}}{v_{0}\cos \beta } \end{align*}
These are 2 equations with 2 unknowns v_{A_{y}}^{+},v_{B_{y}}^{+}. From the second equation\begin{equation} -v_{0}\cos \beta =v_{A_{y}}^{+}-v_{B_{y}}^{+}\tag{1} \end{equation}
Therefore from (1)\begin{align*} v_{B_{y}}^{+} & =v_{0}\cos \beta \\ & =9\cos \left ( 45\left ( \frac{\pi }{180}\right ) \right ) \\ & =6.364\text{ m/s} \end{align*}
Along the x direction, since this is perpendicular to the line of impact then we know that\begin{align*} v_{A_{x}}^{+} & =v_{A_{x}}^{-}=v_{0}\sin \beta =9\sin \left ( 45\left ( \frac{\pi }{180}\right ) \right ) =6.364\text{ m/s}\\ v_{B_{x}}^{+} & =v_{B_{x}}^{-}=0 \end{align*}
Hence velocity of B is \bar{v}_{B}=0\hat{\imath }+6.364\hat{\jmath }
The before and after impact diagram is
Along the x axis, the conservation of linear momentum gives\begin{align} m_{A}v_{A}^{-}\cos \alpha -m_{B}v_{B}^{-}\cos \beta & =m_{A}v_{A_{x}}^{+}+m_{B}v_{B_{x}}^{+}\nonumber \\ \left ( 1.48\right ) \left ( 26.7\right ) \cos \left ( 45\left ( \frac{\pi }{180}\right ) \right ) -\left ( 2.75\right ) \left ( 22.6\right ) \cos \left ( 15\left ( \frac{\pi }{180}\right ) \right ) & =\left ( 1.48\right ) v_{A_{x}}^{+}+\left ( 2.75\right ) v_{B_{x}}^{+}\nonumber \\ -32.09 & =\left ( 1.48\right ) v_{A_{x}}^{+}+\left ( 2.75\right ) v_{B_{x}}^{+}\tag{1} \end{align}
And\begin{align} -e & =\frac{v_{A_{x}}^{+}-v_{B_{x}}^{+}}{v_{A_{x}}^{-}-v_{B_{x}}^{-}}\nonumber \\ -0.58 & =\frac{v_{A_{x}}^{+}-v_{B_{x}}^{+}}{v_{A}^{-}\cos \alpha +v_{B}^{-}\cos \beta }\nonumber \\ -0.58 & =\frac{v_{A_{x}}^{+}-v_{B_{x}}^{+}}{\left ( 26.7\right ) \cos \left ( 45\left ( \frac{\pi }{180}\right ) \right ) +\left ( 22.6\right ) \cos \left ( 15\left ( \frac{\pi }{180}\right ) \right ) }\nonumber \\ -0.58 & =\frac{v_{A_{x}}^{+}-v_{B_{x}}^{+}}{40.71}\nonumber \\ -23.612 & =v_{A_{x}}^{+}-v_{B_{x}}^{+}\tag{2} \end{align}
Now v_{A_{x}}^{+},v_{B_{x}}^{+} is solved for using (1),(2). From (2) v_{A_{x}}^{+}=-23.612+v_{B_{x}}^{+}, substituting this in (1) gives\begin{align*} -32.09 & =\left ( 1.48\right ) \left ( -23.612+v_{B_{x}}^{+}\right ) +\left ( 2.75\right ) v_{B_{x}}^{+}\\ -32.09 & =-34.945+4.23v_{B_{x}}^{+}\\ v_{B_{x}}^{+} & =\frac{-32.09+34.945\,}{4.23}\\ & =0.675\,\text{\ m/s} \end{align*}
From (2)\begin{align*} v_{A_{x}}^{+} & =-23.612+0.675\\ & =-22.937\text{ m/s} \end{align*}
Now we do the same for the y direction. But along this direction we know that\begin{align*} v_{A_{y}}^{+} & =v_{A_{y}}^{-}\\ & =v_{A}^{-}\sin \alpha \\ & =\left ( 26.7\right ) \sin \left ( 45\left ( \frac{\pi }{180}\right ) \right ) \\ & =18.88\text{ m/s} \end{align*}
And\begin{align*} v_{B_{y}}^{+} & =v_{B_{y}}^{-}\\ & =-v_{B}^{-}\sin \beta \\ & =\left ( -22.6\right ) \sin \left ( 15\left ( \frac{\pi }{180}\right ) \right ) \\ & =-5.849\,\text{ m/s} \end{align*}
Therefore, after impact\begin{align*} \bar{v}_{A} & =-22.938\text{ }\hat{\imath }+18.879\,\hat{\jmath }\\ \bar{v}_{B} & =0.675\hat{\imath }-5.849\,\hat{\jmath } \end{align*}
Using \tau =4I\ddot{\theta }
The angular momentum \bar{h} is the moment of the linear momentum. The linear momentum is m\bar{v}. Using radial and tangential coordinates, then m\bar{v}=m\left ( L\dot{\theta }\hat{u}_{\theta }+0\hat{u}_{r}\right )
The above is what we want. But we need to find \dot{\theta }. Taking time derivative of \bar{h} gives \frac{d}{dt}\bar{h}=\hat{k}mL^{2}\ddot{\theta }
To integrate this, we need a trick. Since \begin{align*} \ddot{\theta } & =\frac{d}{dt}\dot{\theta }\\ & =\left ( \frac{d}{d\theta }\frac{d\theta }{dt}\right ) \dot{\theta }\\ & =\left ( \frac{d}{d\theta }\dot{\theta }\right ) \dot{\theta }\\ & =\dot{\theta }\frac{d\dot{\theta }}{d\theta } \end{align*}
Then (2) becomes \dot{\theta }\frac{d\dot{\theta }}{d\theta }=-\frac{g}{L}\sin \theta
All this work was to find \dot{\theta }. Now we go back to (1) and find the angular momentum\begin{align*} \bar{h} & =\hat{k}mL^{2}\dot{\theta }\\ & =\pm \hat{k}\sqrt{\frac{2g}{L}\left ( \cos \theta -\cos 33^{0}\right ) }mL^{2}\\ & =\pm \hat{k}\sqrt{2gL^{3}\left ( \cos \theta -\cos 33^{0}\right ) }m\\ & =\pm \hat{k}\sqrt{\frac{2L^{3}}{g}\left ( \cos \theta -\cos 33^{0}\right ) }W \end{align*}
Substituting numerical values\begin{align*} \bar{h} & =\pm \hat{k}1.8\sqrt{\frac{2\left ( 5.3\right ) ^{3}}{\left ( 32.2\right ) }\left ( \cos \theta -\cos \left ( 33\left ( \frac{\pi }{180}\right ) \right ) \right ) }\\ & =\pm \hat{k}1.8\sqrt{9.247\left ( \cos \theta -0.839\right ) }\\ & =\pm \hat{k}1.8\sqrt{9.247}\sqrt{\left ( \cos \theta -0.839\right ) }\\ & =\pm 5.474\sqrt{\left ( \cos \theta -0.839\right ) }\hat{k} \end{align*}
There is no external torque, hence angular momentum is conserved. Let \bar{h}_{1} be the angular momentum initially and let \bar{h}_{2} be angular momentum be at some instance of time later on. Therefore\begin{align*} \bar{h}_{1} & =\bar{r}_{1}\times m\bar{v}_{1}\\ & =r_{0}\hat{u}_{r}\times m\left ( r_{0}\omega _{0}\hat{u}_{\theta }\right ) \\ & =\begin{vmatrix} \hat{u}_{r} & \hat{u}_{\theta } & \hat{k}\\ r_{0} & 0 & 0\\ 0 & mr_{0}\omega _{0} & 0 \end{vmatrix} \\ & =mr_{0}^{2}\omega _{0}\hat{k} \end{align*}
And at some later instance\begin{align*} \bar{h}_{2} & =\bar{r}_{2}\times m\bar{v}_{2}\\ & =r\hat{u}_{r}\times m\left ( \dot{r}\hat{u}_{r}+r\omega \hat{u}_{\theta }\right ) \\ & =\begin{vmatrix} \hat{u}_{r} & \hat{u}_{\theta } & \hat{k}\\ r & 0 & 0\\ m\dot{r} & mr\omega & 0 \end{vmatrix} \\ & =mr^{2}\omega \hat{k} \end{align*}
Equating the last two results gives\begin{align} mr_{0}^{2}\omega _{0} & =mr^{2}\omega \nonumber \\ \omega & =\left ( \frac{r_{0}}{r}\right ) ^{2}\omega _{0}\tag{1} \end{align}
Now the equation of motion in radial direction is F=ma_{r}, but F=0, since there is no force on the collar. Therefore\begin{align*} ma_{r} & =0\\ m\left ( \ddot{r}-r\omega ^{2}\right ) & =0\\ \ddot{r} & =r\omega ^{2} \end{align*}
Using (1) in the above\begin{align*} \ddot{r} & =r\left [ \left ( \frac{r_{0}}{r}\right ) ^{2}\right ] ^{2}\omega _{0}^{2}\\ \ddot{r} & =\frac{r_{0}^{4}}{r^{3}}\omega _{0}^{2} \end{align*}
But \ddot{r}=\dot{r}\frac{d\dot{r}}{dr}, hence the above becomes \dot{r}d\dot{r}=\frac{r_{0}^{4}}{r^{3}}\omega _{0}^{2}dr
Therefore \dot{r}=\omega _{0}r_{0}^{2}\sqrt{\left ( \frac{1}{r_{0}^{2}}-\frac{1}{r^{2}}\right ) }
Using \bar{h}_{1}+\int _{0}^{t}\tau dt=\bar{h}_{2}
But torque \tau =I_{2}\ddot{\theta } where I_{2}=2\left ( mr^{2}\right ) where m is mass of each small ball and I_{2} is the mass moment of inertial of the small ball about the spin axis. Hence the above becomes\begin{align*} \int _{0}^{t}\tau dt & =\bar{h}_{2}\\ 2\left ( mr^{2}\right ) \ddot{\theta }\int _{0}^{t}dt & =\bar{h}_{2} \end{align*}
Since \ddot{\theta } is constant. Hence 2\left ( mr^{2}\right ) \ddot{\theta }t=2MR^{2}\omega _{f}