Using impulse momentum p_{1}+\int _{0}^{t}F_{av}\left ( t\right ) dt=p_{2}
Therefore\begin{align*} F_{av}\left ( 0.0011\right ) & =2.688\\ F_{av} & =\frac{2.688}{0.0011}\\ & =2443.636\text{ lb} \end{align*}
\,p_{1}+\int _{0}^{t}Tdt=p_{2}
To find how long a runway is needed x_{f}=x_{1}+v_{1}t+\frac{1}{2}at^{2}
This is 4 times as long as without the catapults.
\begin{align*} \bar{p}_{1}+\int _{0}^{t}\bar{F}dt & =\bar{p}_{2}\\ -mv_{1}\hat{\imath }+\int _{0}^{t}\left ( F_{x}\hat{\imath }+F_{y}\hat{\jmath }\right ) dt & =mv_{2}\cos \alpha \hat{\imath }+mv_{2}\sin \alpha \hat{\jmath }\\ \hat{\imath }\left ( -mv_{1}+F_{x}t\right ) +\hat{\jmath }\left ( F_{y}t\right ) & =mv_{2}\cos \alpha \hat{\imath }+mv_{2}\sin \alpha \hat{\jmath } \end{align*}
Hence we obtain two equations\begin{align*} -mv_{1}+F_{x}t & =mv_{2}\cos \alpha \\ F_{y}t & =mv_{2}\sin \alpha \end{align*}
Or\begin{align*} F_{x}t & =mv_{2}\cos \alpha +mv_{1}\\ F_{y}t & =mv_{2}\sin \alpha \end{align*}
Now m=\frac{\frac{5.125}{16}}{32.2}=0.00994 slug, and v_{1}=89\left ( \frac{5280}{3600}\right ) =130.533 ft/sec and v_{2}=160\left ( \frac{5280}{3600}\right ) =234.667 ft/sec. Hence\begin{align*} F_{x}t & =\left ( 0.00994\right ) \left ( 234.667\right ) \cos \left ( 32\left ( \frac{\pi }{180}\right ) \right ) +\left ( 0.00994\right ) \left ( 130.5333\right ) \\ F_{y}t & =\left ( 0.00994\right ) \left ( 234.667\right ) \sin \left ( 32\left ( \frac{\pi }{180}\right ) \right ) \end{align*}
Or \begin{align*} F_{x}t & =1.978\,+1.298=3.276\\ F_{y} & =1.236\, \end{align*}
Hence impulse is \bar{I}=3.276\hat{\imath }+1.236\hat{\jmath }
Since there is no external force, then p_{1}=p_{2} or\begin{equation} m_{B}v_{B}^{-}+m_{A}v_{A}^{-}=m_{B}v_{B}^{+}+m_{A}v_{A}^{+}\tag{1} \end{equation}
Hence (1) becomes\begin{align} \left ( 64.2857\right ) \left ( 46.933\right ) -\left ( 251.8634\right ) \left ( 83.6\right ) & =\frac{2070}{32.2}v_{B}^{+}+\frac{8110}{32.2}v_{A}^{+}\nonumber \\ -18038.66 & =64.286v_{B}^{+}+251.863\,4v_{A}^{+}\tag{2} \end{align}
And since e=0, then\begin{align} e & =0=\frac{v_{B}^{+}-v_{A}^{+}}{v_{A}^{-}-v_{B}^{-}}\nonumber \\ v_{B}^{+} & =v_{A}^{+}\tag{3} \end{align}
Using (2,3) we solve for v_{B}^{+},v_{A}^{+}. Plug (3) into (2) gives\begin{align*} -18038.66 & =64.286v_{A}^{+}+251.863\,4v_{A}^{+}\\ -18038.66 & =316.\,1494v_{A}^{+}\\ v_{A}^{+} & =\frac{-18038.66}{316.\,1494}\\ & =-57.057\,39\text{ ft/sec} \end{align*}
Hence v_{B}^{+}=-57.057\,39\text{ ft/sec}
Let v_{B}^{-} be speed of bullet befor impact. Assume that after imapct bullet and mass A are stuck togother with speed v^{+}. Hence\begin{equation} m_{B}v_{B}^{-}=\left ( m_{B}+m_{A}\right ) v^{+}\tag{1} \end{equation}
Then (1) becomes\begin{align*} 0.09v_{B}^{-} & =\left ( 0.09+5.8\right ) \left ( 3.516\right ) \\ v_{B}^{-} & =\frac{\left ( 0.09+5.8\right ) \left ( 3.516\right ) }{0.09}\\ & =230.103\text{ m/sec} \end{align*}
Applying impulse momentum m_{B}v_{B}^{-}=\left ( m_{B}+m_{A}\right ) v^{+}
Now applying work-energy\begin{align*} T_{1}+U^{12} & =T_{2}\\ \frac{1}{2}\left ( m_{B}+m_{A}\right ) \left ( v^{+}\right ) ^{2}-\int _{0}^{d}\mu \left ( m_{B}+m_{A}\right ) gdx & =0 \end{align*}
We now solve for d\begin{align*} \frac{1}{2}\left ( 1860+1524\right ) \left ( 5.802\right ) ^{2}-\left ( 0.67\right ) \left ( 1860+1524\right ) \left ( 9.81\right ) d & =0\\ d & =\frac{\frac{1}{2}\left ( 1860+1524\right ) \left ( 5.802\right ) ^{2}}{\left ( 0.67\right ) \left ( 1860+1524\right ) \left ( 9.81\right ) }\\ & =2.561\text{ meter} \end{align*}