4.11 HW10

  4.11.1 Section 5.1 problem 10 (page 299)
  4.11.2 Section 5.1 problem 19
  4.11.3 Section 5.1 problem 24
  4.11.4 Section 5.1 problem 26
  4.11.5 Section 5.1 problem 27
  4.11.6 Section 5.1 problem 31
  4.11.7 Section 5.1 problem 32
  4.11.8 Section 5.1 problem 34
  4.11.9 Section 5.1 problem 42
  4.11.10 Section 5.1 problem 48
PDF (letter size)
PDF (legal size)

4.11.1 Section 5.1 problem 10 (page 299)

problem

Verify that \(y_{1},y_{2}\) are solutions of the differential equation. Then find a particular solution of the form \(y=c_{1}y_{1}+c_{2}y_{2}\) that satisfies the initial conditions. \(y^{\prime \prime }-10y^{\prime }+25y=0\) with \(y_{1}=e^{5x},y_{2}=xe^{5x}\) and \(y\left ( 0\right ) =3,y^{\prime }\left ( 0\right ) =13\)

solution

To verify that \(y_{1}\) or \(y_{2}\) is solution to the ODE, we plug it into the ODE and see if it gives zero, which is what the RHS is. Since \(y_{1}^{\prime }=5e^{5x},y_{1}^{\prime \prime }=25e^{5x}\), then substituting this into the ODE gives

\begin{align*} y_{1}^{\prime \prime }-10y_{1}^{\prime }+25y_{1} & =0\\ 25e^{5x}-10\left ( 5e^{5x}\right ) +25\left ( e^{5x}\right ) & =0\\ 25e^{5x}-50e^{5x}+25e^{5x} & =0\\ 0 & =0 \end{align*}

Hence verified. Now we do the same for \(y_{2}\). Since \(y_{2}^{\prime }=e^{5x}+5xe^{5x},y_{2}^{\prime \prime }=5e^{5x}+5e^{5x}+25xe^{5x}\), then substituting this into the ODE gives

\begin{align*} y_{2}^{\prime \prime }-10y_{2}^{\prime }+25y_{2} & =0\\ \left ( 5e^{5x}+5e^{5x}+25xe^{5x}\right ) -10\left ( e^{5x}+5xe^{5x}\right ) +25\left ( xe^{5x}\right ) & =0\\ 5e^{5x}+5e^{5x}+25xe^{5x}-10e^{5x}-50xe^{5x}+25xe^{5x} & =0\\ 25xe^{5x}-50xe^{5x}+25xe^{5x} & =0\\ 0 & =0 \end{align*}

Hence verified. Therefore the general solution is

\[ y\left ( x\right ) =c_{1}y_{1}\left ( x\right ) +c_{2}y\left ( x\right ) \]

Where the constants are found from initial conditions. Using the first initial condition gives

\begin{align*} y\left ( 0\right ) & =3\\ c_{1}y_{1}\left ( 0\right ) +c_{2}y_{2}\left ( 0\right ) & =3\\ c_{1}\left ( e^{5x}\right ) _{x=0}+c_{2}\left ( xe^{5x}\right ) _{x=0} & =3\\ c_{1} & =3 \end{align*}

Hence the solution becomes \begin{align*} y\left ( x\right ) & =3y_{1}\left ( x\right ) +c_{2}y_{2}\left ( x\right ) \\ y^{\prime } & =3y_{1}^{\prime }+c_{2}y_{2}^{\prime }\\ & =3\left ( 5e^{5x}\right ) +c_{2}\left ( e^{5x}+5xe^{5x}\right ) \end{align*}

Applying the second boundary conditions gives

\begin{align*} y^{\prime }\left ( 0\right ) & =13\\ 3\left ( 5e^{5x}\right ) _{x=0}+c_{2}\left ( e^{5x}+5xe^{5x}\right ) _{x=0} & =13\\ 3\left ( 5\right ) +c_{2} & =13\\ c_{2} & =13-15\\ & =-2 \end{align*}

Therefore the particular solution is

\begin{align*} y\left ( x\right ) & =c_{1}y_{1}\left ( x\right ) +c_{2}y\left ( x\right ) \\ & =3y_{1}\left ( x\right ) -2y\left ( x\right ) \\ & =3e^{5x}-2xe^{5x}\\ & =e^{5x}\left ( 3-2x\right ) \end{align*}

4.11.2 Section 5.1 problem 19

problem Show that \(y_{1}=1,y_{2}=\sqrt{x}\) are solutions to \(yy^{\prime \prime }+\left ( y^{\prime }\right ) ^{2}=0\) but that their sum \(y=y_{1}+y_{2}\) is not a solution

solution To show that \(y_{1}\) and \(y_{2}\) are solution to the ODE, we plug them into the ODE and see if the result is the same as the RHS. Since \(y_{1}=1\) then \(y_{1}^{\prime }=0,y_{1}^{\prime \prime }=0\). Then ODE becomes

\begin{align*} y_{1}y_{1}^{\prime \prime }+\left ( y_{1}^{\prime }\right ) ^{2} & =0\\ 1\left ( 0\right ) +0 & =0\\ 0 & =0 \end{align*}

Hence verified. For \(y_{2}\), we have \(y_{2}^{\prime }=\frac{1}{2x^{\frac{1}{2}}},y_{2}^{\prime \prime }=\frac{-1}{4}\frac{1}{x^{\frac{3}{2}}}\). Hence the ODE becomes

\begin{align*} y_{2}y_{2}^{\prime \prime }+\left ( y_{2}^{\prime }\right ) ^{2} & =0\\ x^{\frac{1}{2}}\left ( \frac{-1}{4}\frac{1}{x^{\frac{3}{2}}}\right ) +\left ( \frac{1}{2x^{\frac{1}{2}}}\right ) ^{2} & =0\\ \left ( \frac{-1}{4}\frac{1}{x}\right ) +\left ( \frac{1}{4x}\right ) & =0\\ 0 & =0 \end{align*}

Hence verified. Now we plugin the sum into the ODE.

\begin{align*} \left ( y_{1}+y_{2}\right ) \left ( y_{1}+y_{2}\right ) ^{\prime \prime }+\left ( \left ( y_{1}+y_{2}\right ) ^{\prime }\right ) ^{2} & =0\\ \left ( y_{1}+y_{2}\right ) \left ( y_{1}^{\prime \prime }+y_{2}^{\prime \prime }\right ) +\left ( y_{1}^{\prime }+y_{2}^{\prime }\right ) ^{2} & =0\\ \left ( y_{1}y_{1}^{\prime \prime }+y_{1}y_{2}^{\prime \prime }\right ) +\left ( y_{2}y_{1}^{\prime \prime }+y_{2}y_{2}^{\prime \prime }\right ) +\left ( y_{1}^{\prime }\right ) ^{2}+\left ( y_{2}^{\prime }\right ) ^{2}+2y_{1}^{\prime }y_{2}^{\prime } & =0\\ y_{1}y_{1}^{\prime \prime }+y_{1}y_{2}^{\prime \prime }+y_{2}y_{1}^{\prime \prime }+y_{2}y_{2}^{\prime \prime }+\left ( y_{1}^{\prime }\right ) ^{2}+\left ( y_{2}^{\prime }\right ) ^{2}+2y_{1}^{\prime }y_{2}^{\prime } & =0 \end{align*}

But we found that \(y_{1}y_{1}^{\prime \prime }+\left ( y_{1}^{\prime }\right ) ^{2}=0\) and \(y_{2}y_{2}^{\prime \prime }+\left ( y_{2}^{\prime }\right ) ^{2}=0\) from earlier. Using these into the LHS of the above simplifies it to

\[ y_{1}y_{2}^{\prime \prime }+y_{2}y_{1}^{\prime \prime }+2y_{1}^{\prime }y_{2}^{\prime }=0 \]

But \(y_{2}^{\prime \prime }=\frac{-1}{4}\frac{1}{x^{\frac{3}{2}}},y_{1}^{\prime \prime }=0,y_{1}^{\prime }=0,y_{1}=1\), then the above becomes

\[ \frac{-1}{4}\frac{1}{x^{\frac{3}{2}}}=0 \]

We see that the LHS is not zero. Hence \(y_{1}+y_{2}\) is not a solution to the ODE.

4.11.3 Section 5.1 problem 24

problem Determine whether the pairs of functions are linearly independent or not on the real line. \(f\left ( x\right ) =\sin ^{2}x,g\left ( x\right ) =1-\cos 2x\)

solution The two functions are L.I. if  \(c_{1}f\left ( x\right ) +c_{1}g\left ( x\right ) =0\) for each \(x\), only when \(c_{1}=c_{2}=0\). Or stated differently, two functions are L.D. if there exist \(c_{1},c_{2}\) not all zero, such that \(c_{1}f\left ( x\right ) +c_{1}g\left ( x\right ) =0\) for each \(x\). To show this, we set up the Wronskian \(W\) and see if it is zero or not. If \(W=0\) then this mean that the functions are L.D.

\begin{align*} W & =\begin{vmatrix} f\left ( x\right ) & g\left ( x\right ) \\ f^{\prime }\left ( x\right ) & g^{\prime }\left ( x\right ) \end{vmatrix} =\\ & \begin{vmatrix} \sin ^{2}x & 1-\cos 2x\\ 2\sin x\cos x & 2\sin 2x \end{vmatrix} \\ & =2\sin ^{2}x\sin 2x-\left ( 1-\cos 2x\right ) \left ( 2\sin x\cos x\right ) \\ & =2\sin ^{2}x\sin 2x-2\sin x\cos x+2\cos 2x\sin x\cos x \end{align*}

The RHS of the above simplifies to \(0\).

\[ W=0 \]

Therefore, the functions are linearly dependent.

4.11.4 Section 5.1 problem 26

problem Determine whether the pairs of functions are linearly independent or not on the real line. \(f\left ( x\right ) =2\cos x+3\sin x,g\left ( x\right ) =3\cos x-2\sin x\)

solution To show this, we set up the Wronskian \(W\) and see if it is zero or not. If \(W=0\) then this mean that the functions are L.D.

\begin{align*} W & =\begin{vmatrix} f\left ( x\right ) & g\left ( x\right ) \\ f^{\prime }\left ( x\right ) & g^{\prime }\left ( x\right ) \end{vmatrix} =\\ & \begin{vmatrix} 2\cos x+3\sin x & 3\cos x-2\sin x\\ -2\sin x+3\cos x & -3\sin x-2\cos x \end{vmatrix} \\ & =\left ( 2\cos x+3\sin x\right ) \left ( -3\sin x-2\cos x\right ) -\left ( 3\cos x-2\sin x\right ) \left ( -2\sin x+3\cos x\right ) \\ & =-13\cos ^{2}x-13\sin ^{2}x\\ & =-13\left ( \cos ^{2}x+\sin ^{2}x\right ) \\ & =-13 \end{align*}

Since \(W\neq 0\) then the functions are Linearly independent.

4.11.5 Section 5.1 problem 27

problem Ley \(y_{p}\) be a particular solution of the nonhomogeneous equation \(y^{\prime \prime }+py^{\prime }+qy=f\left ( x\right ) \) and let \(y_{h}\) be the homogenous solution. Show that \(y=y_{h}+y_{p}\) is a solution of the given ODE.

solution since \(y_{h}\) satisfies the homogenous ODE then we can write

\begin{equation} y_{h}^{\prime \prime }+py_{h}^{\prime }+qy_{h}=0 \tag{1} \end{equation}

And since \(y_{p}\) satisfies the nonhomogeneous ODE then we can write

\begin{equation} y_{p}^{\prime \prime }+py_{p}^{\prime }+qy_{p}=f\left ( x\right ) \tag{2} \end{equation}

Adding (1)+(2) gives

\[ \left ( y_{p}^{\prime \prime }+y_{h}^{\prime \prime }\right ) +p\left ( y_{p}^{\prime }+y_{p}^{\prime }\right ) +q\left ( y_{p}+y_{h}\right ) =f\left ( x\right ) \]

But due to linearity of differentiation, then the above can be written as

\[ \left ( y_{p}+y_{h}\right ) ^{\prime \prime }+p\left ( y_{p}+y_{p}\right ) ^{\prime }+q\left ( y_{p}+y_{h}\right ) =f\left ( x\right ) \]

Let \(Y=y_{p}+y_{h}\) then

\[ Y^{\prime \prime }+pY^{\prime }+qY=f\left ( x\right ) \]

Therefore we showed that \(Y=y_{p}+y_{h}\) satisfies the original ODE, hence it is a solution. QED

4.11.6 Section 5.1 problem 31

problem Show that \(y_{1}=\sin x^{2}\) and \(y=\cos x^{2}\) are L.I. functions, but their Wronskian vanishes are \(x=0\). Why does this implies that there is no differential equation of the form \(y^{\prime \prime }+p\left ( x\right ) y^{\prime }+q\left ( x\right ) y=0\) with both \(p,q\) continuous everywhere, having both \(y_{1},y_{2}\) are solutions?

solution

\begin{align*} W & =\begin{vmatrix} y_{1} & y_{2}\\ y_{2}^{\prime } & y_{2}^{\prime }\end{vmatrix} =\\ & \begin{vmatrix} \sin x^{2} & \cos x^{2}\\ \left ( 2x\right ) \cos x^{2} & -\left ( 2x\right ) \sin x^{2}\end{vmatrix} \\ & =-2x\sin x^{2}\sin x^{2}-2x\cos ^{2}\cos x^{2}\\ & =-2x\left ( \left ( \sin x^{2}\right ) ^{2}+\left ( \cos x^{2}\right ) ^{2}\right ) \\ & =-2x \end{align*}

The Wronskian is zero at \(x=0\) but not zero at other points. It is only when \(W=0\) everywhere, we say that \(y_{1},y_{2}\) are L.D.  We can have L.I. functions, but also have \(W\left ( x_{0}\right ) =0\) at some \(x_{0}\) as in this problem. What this mean, is that \(x=0\) can not be in the domain of the solution for \(y_{1},y_{2}\) to be solutions to the ODE. Hence, since the domain of the solution is everywhere, this means \(x=0\) is part of the domain, then we conclude that \(y_{1},y_{2}\) can not be both solutions, since they are L.I. at \(x=0\).  

4.11.7 Section 5.1 problem 32

   4.11.7.1 Part (a)
   4.11.7.2 Part (b)
   4.11.7.3 Part (c)

problem Let \(y_{1},y_{2}\) be two solutions of \(A\left ( x\right ) y^{\prime \prime }+B\left ( x\right ) y^{\prime }+C\left ( x\right ) y=0\) on open interval \(I\) where \(A,B,C\) are continuous and \(A\left ( x\right ) \) is never zero. (a) Let \(W=W\left ( y_{1},y_{2}\right ) \). Show that \(A\left ( x\right ) \frac{dW}{dx}=y_{1}\left ( Ay_{2}^{\prime \prime }\right ) -y_{2}\left ( Ay_{1}^{\prime \prime }\right ) \) then substitute for \(Ay_{2}^{\prime \prime }\) and \(Ay_{1}^{\prime \prime }\) from the original ODE to show that \(A\left ( x\right ) \frac{dW}{dx}=-B\left ( x\right ) W\left ( x\right ) \) (b) Solve this first order ODE equation to deduce Abel’s formula \(W\left ( x\right ) =k\exp \left ( -\int \frac{B\left ( x\right ) }{A\left ( x\right ) }dx\right ) \) where \(k\) is constant. (c) Why does Abel’s formula imply that the Wronskian \(W\left ( y_{1},y_{2}\right ) \) is either zero everywhere or non-zero everywhere (as stated in theorem 3)?

solution

4.11.7.1 Part (a)

By definition

\[ W\left ( x\right ) =y_{1}y_{2}^{\prime }-y_{2}y_{1}^{\prime }\]

Hence

\begin{align*} \frac{dW}{dx} & =y_{1}^{\prime }y_{2}^{\prime }+y_{1}y_{2}^{\prime \prime }-y_{2}^{\prime }y_{1}^{\prime }-y_{2}y_{1}^{\prime \prime }\\ & =y_{1}y_{2}^{\prime \prime }-y_{2}y_{1}^{\prime \prime } \end{align*}

Therefore

\begin{align} A\left ( x\right ) \frac{dW}{dx} & =A\left ( x\right ) \left ( y_{1}y_{2}^{\prime \prime }-y_{2}y_{1}^{\prime \prime }\right ) \nonumber \\ & =y_{1}\left ( A\left ( x\right ) y_{2}^{\prime \prime }\right ) -y_{2}\left ( A\left ( x\right ) y_{1}^{\prime \prime }\right ) \tag{1} \end{align}

But from original ODE, \(A\left ( x\right ) y_{1}^{\prime \prime }+B\left ( x\right ) y_{1}^{\prime }+C\left ( x\right ) y_{1}=0\), therefore \begin{equation} A\left ( x\right ) y_{1}^{\prime \prime }=-B\left ( x\right ) y_{1}^{\prime }-C\left ( x\right ) y_{1} \tag{2} \end{equation} And also from original ODE, \(A\left ( x\right ) y_{2}^{\prime \prime }+B\left ( x\right ) y_{2}^{\prime }+C\left ( x\right ) y_{2}=0\), therefore \begin{equation} A\left ( x\right ) y_{2}^{\prime \prime }=-B\left ( x\right ) y_{2}^{\prime }-C\left ( x\right ) y_{2} \tag{3} \end{equation}

Substituting (2,3) into (1) gives

\begin{align} A\left ( x\right ) \frac{dW}{dx} & =y_{1}\left ( -B\left ( x\right ) y_{2}^{\prime }-C\left ( x\right ) y_{2}\right ) -y_{2}\left ( -B\left ( x\right ) y_{1}^{\prime }-C\left ( x\right ) y_{1}\right ) \nonumber \\ & =-B\left ( x\right ) y_{1}y_{2}^{\prime }-C\left ( x\right ) y_{1}y_{2}+B\left ( x\right ) y_{2}y_{1}^{\prime }+C\left ( x\right ) y_{2}y_{1}\nonumber \\ & =-B\left ( x\right ) y_{1}y_{2}^{\prime }+B\left ( x\right ) y_{2}y_{1}^{\prime }\nonumber \\ & =-B\left ( x\right ) \left ( y_{1}y_{2}^{\prime }-y_{2}y_{1}^{\prime }\right ) \nonumber \\ & =-B\left ( x\right ) W\left ( x\right ) \tag{4} \end{align}

QED.

4.11.7.2 Part (b)

Solving (4).

\begin{align*} A\left ( x\right ) \frac{dW}{dx}+B\left ( x\right ) W\left ( x\right ) & =0\\ \frac{dW}{dx}+\frac{B\left ( x\right ) }{A\left ( x\right ) }W\left ( x\right ) & =0 \end{align*}

Integrating factor is \(\mu =e^{\int \frac{B\left ( x\right ) }{A\left ( x\right ) }dx}\), hence the above becomes

\[ \frac{d}{dx}\left ( \mu W\left ( x\right ) \right ) =0 \]

Integrating gives

\begin{align*} \mu W\left ( x\right ) & =k\\ W\left ( x\right ) & =ke^{-\int \frac{B\left ( x\right ) }{A\left ( x\right ) }dx} \end{align*}

4.11.7.3 Part (c)

Since an exponential function is never zero (for bounded \(\frac{B\left ( x\right ) }{A\left ( x\right ) }\)), then \(W\left ( x\right ) =ke^{\left ( \cdot \right ) }\) can only be zero if \(k=0\). This makes \(W=0\) everywhere when \(k=0\). But if \(k\neq 0\), then \(W\neq 0\) everywhere. So \(W\) can only be zero everywhere, or not zero everywhere.

4.11.8 Section 5.1 problem 34

problem Apply theorem 5 and 6 to find general solutions of the differential equation \(y^{\prime \prime }+2y^{\prime }-15y=0\)

solution The characteristic equation is \(r^{2}+2r-15=0\), and the roots are \begin{align*} r_{1} & =3\\ r_{2} & =-5 \end{align*}

Therefore the solution is

\begin{align*} y\left ( x\right ) & =c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x}\\ & =c_{1}e^{3x}+c_{2}e^{-5x} \end{align*}

4.11.9 Section 5.1 problem 42

problem Apply theorem 5 and 6 to find general solutions of the differential equation \(35y^{\prime \prime }-y^{\prime }-12y=0\)

solution The characteristic equation is \(35r^{2}-r-12=0\), and the roots are \begin{align*} r_{1} & =\frac{3}{5}\\ r_{2} & =-\frac{4}{7} \end{align*}

Therefore the solution is

\begin{align*} y\left ( x\right ) & =c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x}\\ & =c_{1}e^{\frac{3}{5}x}+c_{2}e^{-\frac{4}{7}x} \end{align*}

4.11.10 Section 5.1 problem 48

problem Problem gives a general solution \(y\left ( x\right ) \) of a homogeneous second order ODE \(ay^{\prime \prime }+by^{\prime }+cy=0\) with constant coefficients. Find such an equation \(y\left ( x\right ) =e^{x}\left ( c_{1}e^{x\sqrt{2}}+c_{2}e^{-x\sqrt{2}}\right ) \)

solution We compare the above solution to the general form of the solution given by

\begin{align*} y & =c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x}\\ & =c_{1}e^{x\left ( 1+\sqrt{2}\right ) }+c_{2}e^{x\left ( 1-\sqrt{2}\right ) } \end{align*}

We see that \begin{align*} r_{1} & =1+\sqrt{2}\\ r_{2} & =1-\sqrt{2} \end{align*}

This implies that the characteristic equation is

\begin{align*} \left ( r-r_{1}\right ) \left ( r-r_{2}\right ) & =0\\ \left ( r-\left ( 1+\sqrt{2}\right ) \right ) \left ( r-\left ( 1-\sqrt{2}\right ) \right ) & =0\\ r^{2}-2r-1 & =0 \end{align*}

Therefore the ODE is

\[ y''-2y'-y=0 \]

Where \(a=1,b=-2,c=-1\).