Problem: Use the Wronskian to prove that the given functions are linearly independent on the given interval. f\left ( x\right ) =x,g\left ( x\right ) =\cos \left ( \ln x\right ) ,h\left ( x\right ) =\sin \left ( \ln x\right ) for x>0
solution The Wronskian is
\begin{align*} W\left ( x\right ) & =\begin{vmatrix} f & g & h\\ f^{\prime } & g^{\prime } & h^{\prime }\\ f^{\prime \prime } & g^{\prime \prime } & h^{\prime \prime }\end{vmatrix} \\ & =\begin{vmatrix} x & \cos \left ( \ln x\right ) & \sin \left ( \ln x\right ) \\ 1 & -\sin \left ( \ln x\right ) \frac{1}{x} & \cos \left ( \ln x\right ) \frac{1}{x}\\ 0 & -\cos \left ( \ln x\right ) \frac{1}{x^{2}}+\sin \left ( \ln \right ) \frac{1}{x^{2}} & -\sin \left ( \ln x\right ) \frac{1}{x^{2}}-\cos \left ( \ln x\right ) \frac{1}{x^{2}}\end{vmatrix} \end{align*}
Expanding along the last row\begin{align*} W\left ( x\right ) & =W_{32}\left ( -1\right ) ^{3+2}A_{32}+W_{33}\left ( -1\right ) ^{3+3}A_{33}\\ & =-\left ( -\cos \left ( \ln x\right ) \frac{1}{x^{2}}+\sin \left ( \ln \right ) \frac{1}{x^{2}}\right ) \begin{vmatrix} x & \sin \left ( \ln x\right ) \\ 1 & \cos \left ( \ln x\right ) \frac{1}{x}\end{vmatrix} +\left ( -\sin \left ( \ln x\right ) \frac{1}{x^{2}}-\cos \left ( \ln x\right ) \frac{1}{x^{2}}\right ) \begin{vmatrix} x & \cos \left ( \ln x\right ) \\ 1 & -\sin \left ( \ln x\right ) \frac{1}{x}\end{vmatrix} \\ & =\left ( \cos \left ( \ln x\right ) \frac{1}{x^{2}}-\sin \left ( \ln \right ) \frac{1}{x^{2}}\right ) \left ( \cos \left ( \ln x\right ) -\sin \left ( \ln x\right ) \right ) +\left ( \sin \left ( \ln x\right ) \frac{1}{x^{2}}+\cos \left ( \ln x\right ) \frac{1}{x^{2}}\right ) \left ( \sin \left ( \ln x\right ) +\cos \left ( \ln x\right ) \right ) \end{align*}
Let \sin \left ( \ln \right ) \frac{1}{x^{2}}=A,\cos \left ( \ln x\right ) \frac{1}{x^{2}}=B, \cos \left ( \ln x\right ) =a,\sin \left ( \ln x\right ) =b then the above is\begin{align*} W\left ( x\right ) & =\left ( B-A\right ) \left ( a-b\right ) +\left ( A+B\right ) \left ( b+a\right ) \\ & =2Ab+2Ba \end{align*}
Transforming back\begin{align*} W\left ( x\right ) & =2\sin \left ( \ln \right ) \frac{1}{x^{2}}\sin \left ( \ln x\right ) +2\cos \left ( \ln x\right ) \frac{1}{x^{2}}\cos \left ( \ln x\right ) \\ & =2\sin ^{2}\left ( \ln \right ) \frac{1}{x^{2}}+2\cos ^{2}\left ( \ln x\right ) \frac{1}{x^{2}}\\ & =\frac{2}{x^{2}} \end{align*}
Hence, for x>0 the Wronskian is not zero. Therefore the functions are L.I.
Problem: A third order ODE is given, and three L.I. solutions are given. Find a particular solution satisfying the given initial conditions y^{\prime \prime \prime }-5y^{\prime \prime }+8y^{\prime }-4y=0 and y\left ( 0\right ) =1,y^{\prime }\left ( 0\right ) =4,y^{\prime \prime }\left ( 0\right ) =0 and y_{1}=e^{x},y_{2}=e^{2x},y_{3}=xe^{2x}
solution The general solution is\begin{align*} y & =c_{1}y_{1}+c_{2}y_{2}+c_{3}y_{3}\\ & =c_{1}e^{x}+c_{2}e^{2x}+c_{3}xe^{2x} \end{align*}
Hence y^{\prime }=c_{1}e^{x}+2c_{2}e^{2x}+c_{3}\left ( e^{2x}+2xe^{2x}\right )
Problem: A nonhomogeneous ODE, homogeneous solution y_{h} and particular solution y_{p} are given. Find solution that satisfy the initial conditions. y^{\prime \prime }-2y^{\prime }+2y=2x with y\left ( 0\right ) =4,y^{\prime }\left ( 0\right ) =8 and y_{h}=c_{1}e^{x}\cos x+c_{2}e^{x}\sin x and y_{p}=x+1
solution The general solution is\begin{align*} y & =y_{h}+y_{p}\\ & =c_{1}e^{x}\cos x+c_{2}e^{x}\sin x+x+1 \end{align*}
Therefore y^{\prime }=c_{1}\left ( e^{x}\cos x-e^{x}\sin x\right ) +c_{2}\left ( e^{x}\sin x+e^{x}\cos x\right ) +1
Second initial conditions gives 8=c_{1}+c_{2}+1
Problem: Show that 1,x,x^{2},\cdots ,x^{n} are L.I.
solution Using the Wronskian W\left ( x\right ) =\begin{vmatrix} 1 & x & x^{2} & x^{3} & \cdots & x^{n}\\ 0 & 1 & 2x & 3x^{2} & \cdots & nx^{n-1}\\ 0 & 0 & 2 & 6x & \cdots & n\left ( n-1\right ) x^{n-2}\\ \vdots & \vdots & 0 & 6 & \cdots & n\left ( n-1\right ) \left ( n-2\right ) x^{n-3}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & & n! \end{vmatrix}
Problem: Verify that y_{1}=x and y_{2}=x^{2} are L.I. solutions on the entire line of the equation x^{2}y^{\prime \prime }-2xy+2y=0 but that W\left ( x,x^{2}\right ) vanishes at x=0. Why does these observations not contradicts part (b) of theorem 3?
solution To verify that y_{1},y_{2} are solution of the ODE, we plugin each into the ODE and see if they satisfy it. For y_{1}, we obtain x^{2}y_{1}^{\prime \prime }-2xy_{1}+2y_{1}=0
Verified. For y_{2}, where y_{2}^{\prime }=2x,y_{2}^{\prime \prime }=2, we obtain\begin{align*} x^{2}y_{2}^{\prime \prime }-2xy_{2}+2y_{2} & =0\\ 2x^{2}-4x^{2}+2x^{2} & =0\\ 0 & =0 \end{align*}
Hence verified. Now we need to show that y_{1},y_{2} are L.I. c_{1}y_{1}+c_{2}y_{2}=0
Problem: Find the general solution of the ODE y^{\prime \prime }+8y^{\prime }+25y=0
solution This is constant coefficient, linear, second order ODE. The characteristic equation is r^{2}+8r+25=0. The roots (using quadratic formula) are \begin{align*} r_{1} & =-4+3i\\ r_{2} & =-4-3i \end{align*}
Hence the general solution is\begin{align*} y & =c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x}\\ & =c_{1}e^{\left ( -4+3i\right ) x}+c_{2}e^{\left ( -4-3i\right ) x}\\ & =e^{-4x}\left ( c_{1}\cos 3x+c_{2}\sin 3x\right ) \end{align*}
Problem: Find the general solution of the ODE y^{\left ( 4\right ) }+18y^{\prime \prime }+81y=0
solution This is constant coefficient, linear, second order ODE. The characteristic equation is r^{4}+18r^{2}+81=0. Let r^{2}=z, hence z^{2}+18z+81=0. This can be factored to \left ( z+9\right ) ^{2}=0. Hence the roots are -9 repeated. Therefore r^{2}=-9 or r=\pm 3i. Therefore, the 4 roots are \left \{ 3i,-3i,3i,-3i\right \}
Or y=\left ( c_{1}+xc_{3}\right ) \cos 3x+c_{2}\sin 3x\left ( c_{2}+xc_{4}\right )
Problem: Solve the initial value problem y^{\prime \prime }-6y^{\prime }+25y=0,y\left ( 0\right ) =3,y^{\prime }\left ( 0\right ) =1
solution This is constant coefficient, linear, second order ODE. The characteristic equation is r^{2}-6r+25=0. Using quadratic formula, the roots are \begin{align*} r_{1} & =3+4i\\ r_{2} & =3-4i \end{align*}
Hence the general solution is y\left ( x\right ) =e^{3x}\left ( c_{1}\cos 4x+c_{2}\sin 4x\right )
Hence the solution is y\left ( x\right ) =e^{3x}\left ( 3\cos 4x-2\sin 4x\right )
Problem: Solve the initial value problem y^{\left ( 3\right ) }+10y^{\prime \prime }+25y^{\prime }=0,y\left ( 0\right ) =3,y^{\prime }\left ( 0\right ) =4,y^{\prime \prime }\left ( 0\right ) =5
solution This is constant coefficient, linear, second order ODE. The characteristic equation is r^{3}+10r^{2}+25r=0 or r\left ( r^{2}+10r+25\right ) =0, or r\left ( r+5\right ) ^{2}=0. Hence the roots are \left \{ 0,-5,-5\right \} . There are repeated root. Hence the solution is\begin{align*} y\left ( x\right ) & =c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x}+c_{3}xe^{r_{2}x}\\ & =c_{1}+c_{2}e^{-5x}+c_{3}xe^{-5x} \end{align*}
Hence y^{\prime }=-5c_{2}e^{-5x}+c_{3}\left ( e^{-5x}-5xe^{-5x}\right )
We have three equations to solve for c_{1},c_{2},c_{3}.\begin{pmatrix} 1 & 1 & 0\\ 0 & -5 & 1\\ 0 & 25 & -10 \end{pmatrix}\begin{pmatrix} c_{1}\\ c_{2}\\ c_{3}\end{pmatrix} =\begin{pmatrix} 3\\ 4\\ 5 \end{pmatrix}
From first row
\begin{align*} c_{1}+c_{2} & =3\\ c_{1} & =3+\frac{9}{5}\\ & =\frac{24}{5} \end{align*}
Hence the general solution is\begin{align*} y & =c_{1}+c_{2}e^{-5x}+c_{3}xe^{-5x}\\ & =\frac{24}{5}-\frac{9}{5}e^{-5x}-5xe^{-5x}\\ & =\frac{1}{5}\left ( 24-9e^{-5x}-25xe^{-5x}\right ) \end{align*}
Problem: One solution of the differential equation is given, find the second solution 6y^{\left ( 4\right ) }+5y^{\left ( 3\right ) }+25y^{\prime \prime }+20y^{\prime }+4y=0, and y_{1}=\cos 2x
solution The characteristic equation is 6r^{4}+5r^{3}+25r^{2}+20r+4=0\,. Since \cos 2x is solution, then this implies the roots for this solution must be \,r=\pm 2i, since this is what will give \cos 2x solution. Therefore, there must be factor \left ( r^{2}+4\right ) . Doing long division
\frac{6r^{4}+5r^{3}+25r^{2}+20r+4}{\left ( r^{2}+4\right ) }=6r^{2}+5r+1
Hence the roots are r_{1}=2i,r_{2}=-2i,r_{3}=\frac{-1}{2},r_{4}=\frac{-1}{3}. Therefore the solution is\begin{align*} y & =c_{1}e^{2ix}+c_{2}e^{-2ix}+c_{3}e^{-\frac{1}{2}x}+c_{4}e^{\frac{-1}{3}x}\\ & =c_{1}\cos 2x+c_{2}\sin 2x+c_{3}e^{-\frac{1}{2}x}+c_{4}e^{\frac{-1}{3}x} \end{align*}
Problem: Solve y^{\left ( 3\right ) }-5y^{\prime \prime }+100y^{\prime }-500y=0 with y\left ( 0\right ) =0,y^{\prime }\left ( 0\right ) =10,y^{\prime \prime }\left ( 0\right ) =250 given that y_{1}\left ( x\right ) =e^{5x} is one particular solution of the differential equation.
solution The characteristic equation is r^{3}-5r^{2}+100r-500=0. Since y_{1}\left ( x\right ) =e^{5x} is one solution, then \left ( r-5\right ) is one of the roots. Hence by long division \frac{r^{3}-5r^{2}+100r-500}{r-5}=r^{2}+100
Applying first IC gives 0=c_{1}+c_{2}
Problem: Find linear homogeneous constant coefficient equation with the given general solution y\left ( x\right ) =Ae^{2x}+B\cos 2x+C\sin 2x
solution From the solution, we see that the roots are r_{1}=2,r_{2}=2i,r_{3}=-2i. Hence the characteristic equation is\begin{align*} \left ( r-2\right ) \left ( r^{2}+4\right ) & =0\\ r^{3}-2r^{2}+4r-8 & =0 \end{align*}
Therefore the original ODE is y^{\prime \prime \prime }\left ( x\right ) -2y^{\prime \prime }+4y^{\prime }-8y=0
Problem: Solve y^{\left ( 4\right ) }-y^{\left ( 3\right ) }-y^{\prime \prime }-y^{\prime }-2y=0 with y\left ( 0\right ) =0,y^{\prime }\left ( 0\right ) =0,y^{\prime \prime }\left ( 0\right ) =0,y^{\left ( 3\right ) }=30
solution The characteristic equation is r^{4}-r^{3}-r^{2}-r-2=0
From y\left ( 0\right ) =0 we obtain 0=c_{1}+c_{2}+c_{3}
From second row\begin{align*} 3c_{2}+c_{3}+c_{4} & =0\\ 3c_{2}+3-9 & =0\\ c_{2} & =2 \end{align*}
From first row\begin{align*} c_{1}+c_{2}+c_{3} & =0\\ c_{1}+2+3 & =0\\ c_{1} & =-5 \end{align*}
Hence solution is\begin{align*} y & =c_{1}e^{-x}+c_{2}e^{2x}+c_{3}\cos x+c_{4}\sin x\\ & =-5e^{-x}+2e^{2x}+3\cos x-9\sin x \end{align*}