Processing math: 100%

2.4 HW 4

  2.4.1 problems description
  2.4.2 Problem 1
  2.4.3 Problem 2
  2.4.4 Problem 3
  2.4.5 Problem 4
  2.4.6 Problem 5
  2.4.7 Key solution
PDF (letter size)
PDF (legal size)

2.4.1 problems description

pict

pict

2.4.2 Problem 1

part a

\begin{align*} y^{\prime } & =-\cos x+2ax+b\\ y^{\prime \prime } & =\sin x+2a\\ y^{\prime \prime \prime } & =\cos x \end{align*}

Substituting into the ODE y^{\prime \prime \prime }=\cos x shows it satsiļ¬es it. Hence this is true for any a,b,c.

part b

Since \tan \left ( x+c\right ) =\frac{\sin \left ( x+c\right ) }{\cos \left ( x+c\right ) } then

y^{\prime }=1+\tan ^{2}\left ( x+c\right )

Substituting this into the ode y^{\prime }=1+y^{2} gives

1+\tan ^{2}\left ( x+c\right ) =1+\tan ^{2}\left ( x+c\right )

Which is true for any c

2.4.3 Problem 2

see Key.

2.4.4 Problem 3

see Key

2.4.5 Problem 4

(a) Find all solutions to yy^{\prime }+25x=0 (b) y^{\prime }=ky^{2} (c) xy^{\prime }=x+y

Part a

\begin{align*} y\frac{dy}{dx} & =-25x\\ ydy & =-25xdx\\ \frac{y^{2}}{2} & =-\frac{25}{2}x^{2}+C\\ y^{2} & =-25x^{2}+C_{1} \end{align*}

Hence

y=\pm \sqrt{C_{1}-25x^{2}}

For real solution, we want C_{1}>25x^{2}.

Part b

\begin{align*} \frac{1}{y^{2}}\frac{dy}{dx} & =k\\ \frac{1}{y^{2}}dy & =kdx\\ \frac{-1}{y} & =kx+C\\ y & =\frac{-1}{kx+C} \end{align*}

Part c

\frac{dy}{dx}=1+\frac{y}{x}\qquad x\neq 0

Let u=\frac{y}{x} or y=ux. Hence \frac{dy}{dx}=u^{\prime }x+u and the above ODE becomes

\begin{align*} u^{\prime }x+u & =1+u\\ u^{\prime } & =\frac{1}{x}\\ du & =\frac{1}{x}dx\\ u & =\ln \left \vert x\right \vert +C \end{align*}

Hence y=x\left ( \ln \left \vert x\right \vert +C\right )

2.4.6 Problem 5

(a) Solve the IVP y^{\prime }\left ( x\right ) =1+4y^{2} with y\left ( 0\right ) =0. (b) y^{\prime }=-\frac{x}{y} with y\left ( 1\right ) =\sqrt{3} (c) e^{x}y^{\prime }=2\left ( x+1\right ) y^{2} with y\left ( 0\right ) =\frac{1}{6}

Part a

\begin{align*} y^{\prime }\left ( x\right ) & =1+4y^{2}\\ \frac{dy}{1+4y^{2}} & =dx\\ \frac{1}{2}\arctan \left ( 2y\right ) & =x+C\\ \arctan \left ( 2y\right ) & =2x+C_{1}\\ y & =\frac{\tan \left ( 2x+C_{1}\right ) }{2} \end{align*}

Applying IC gives

0=\frac{1}{2}\tan \left ( C_{1}\right )

Hence C_{1}=0. Therefore the solution is   y=\frac{1}{2}\tan \left ( 2x\right )

Part b

\begin{align*} y^{\prime } & =-\frac{x}{y}\\ ydy & =-xdx\\ \frac{1}{2}y^{2} & =-\frac{1}{2}x^{2}+C\\ y^{2} & =-x^{2}+C_{1} \end{align*}

Applying IC gives

\begin{align*} 3 & =-1+C_{1}\\ C_{1} & =4 \end{align*}

Hence solution is \begin{align*} y^{2} & =-x^{2}+4\\ y & =\pm \sqrt{4-x^{2}} \end{align*}

For real solution 4-x^{2}>0.

Part c

\begin{align*} e^{x}y^{\prime } & =2\left ( x+1\right ) y^{2}\\ \frac{y^{\prime }}{y^{2}} & =2\left ( x+1\right ) e^{-x}\\ y^{-2}dy & =2\left ( x+1\right ) e^{-x}\\ -\frac{1}{y} & =\int 2\left ( x+1\right ) e^{-x}dx\\ & =-2\left ( x+2\right ) e^{-x}+C \end{align*}

Hence \begin{align*} y & =\frac{1}{2\left ( x+2\right ) e^{-x}+C_{1}}\\ & =\frac{1}{2xe^{-x}+4e^{-x}+C_{1}} \end{align*}

Applying IC gives

\begin{align*} \frac{1}{6} & =\frac{1}{4+C_{1}}\\ 4+C_{1} & =6\\ C_{1} & =2 \end{align*}

Hence solution is

y=\frac{1}{2xe^{-x}+4e^{-x}+2}

2.4.7 Key solution

pict

pict

pict

pict