The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +4\,y \left ( x \right ) =20 \end{align*}
with initial conditions y \left ( 0 \right ) =2.
Trying separable ODE.
In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -4\,y+20 \end{align*}
The ODE \frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = -4\,y+20, is separable. It can be written as \frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = f( x) g(y)
\frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = -4\,y+20
Solving for y gives y = -1/4\,{{\rm e}^{-4\,x-4\,C_{{1}}}}+5
Initial conditions are now used to solve for C_{{1}}. Substituting x=0 and y=2 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 2&= -1/4\,C_{{1}}{{\rm e}^{0}}+5\\ &=-1/4\,C_{{1}}+5 \end{align*}
Hence C_{{1}} = 12\, \left ({{\rm e}^{0}} \right ) ^{-1}
The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +3\,y \left ( x \right ) =\sin \left ( x \right ) \end{align*}
with initial conditions y \left ( \pi /2 \right ) =3/10.
Trying Linear ODE.
In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -3\,y+\sin \left ( x \right ) \end{align*}
The ODE is linear in y and has the form y' = y f(x) + g(x)
Writing the ODE as \begin{align*} y' - \left (-3\,y\right ) &= \sin \left ( x \right ) \\ y' + 3\,y &= \sin \left ( x \right ) \end{align*}
Therefore the integrating factor \mu is \mu = e^{\int 3\mathop{\mathrm{d}x}} ={{\rm e}^{3\,x}}
Integrating both sides gives \begin{align*} y{{\rm e}^{3\,x}} &= -1/10\,\cos \left ( x \right ){{\rm e}^{3\,x}}+3/10\,\sin \left ( x \right ){{\rm e}^{3\,x}} + C_1 \end{align*}
Dividing both sides by the integrating factor \mu ={{\rm e}^{3\,x}} results in y ={\frac{-1/10\,\cos \left ( x \right ){{\rm e}^{3\,x}}+3/10\,\sin \left ( x \right ){{\rm e}^{3\,x}}}{{{\rm e}^{3\,x}}}}+{\frac{C_{{1}}}{{{\rm e}^{3\,x}}}}
Initial conditions are now used to solve for C_{{1}}. Substituting x=\pi /2 and y=3/10 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 3/10&= 3/10\,\sin \left ( \pi /2 \right ) -1/10\,\cos \left ( \pi /2 \right ) +C_{{1}}{{\rm e}^{-3/2\,\pi }}\\ &=3/10+C_{{1}}{{\rm e}^{-3/2\,\pi }} \end{align*}
Hence C_{{1}} = -1/10\,{\frac{3\,\sin \left ( \pi /2 \right ) -\cos \left ( \pi /2 \right ) -3}{{{\rm e}^{-3/2\,\pi }}}}
The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) \left ( 1+3\,{x}^{-1} \right ) =x+2 \end{align*}
with initial conditions y \left ( 1 \right ) ={\rm e}-1.
Trying Linear ODE.
In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &={\frac{{x}^{2}+xy+2\,x+3\,y}{x}} \end{align*}
The ODE is linear in y and has the form y' = y f(x) + g(x)
Writing the ODE as \begin{align*} y' - \left ({\frac{ \left ( x+3 \right ) y}{x}}\right ) &={\frac{{x}^{2}+2\,x}{x}}\\ y' -{\frac{ \left ( x+3 \right ) y}{x}} &={\frac{{x}^{2}+2\,x}{x}} \end{align*}
Therefore the integrating factor \mu is \mu = e^{\int -{\frac{x+3}{x}}\mathop{\mathrm{d}x}} ={{\rm e}^{-x-3\,\ln \left ( x \right ) }}
Integrating both sides gives \begin{align*} y{{\rm e}^{-x-3\,\ln \left ( x \right ) }} &= -{{\rm e}^{-x-3\,\ln \left ( x \right ) }}x + C_1 \end{align*}
Dividing both sides by the integrating factor \mu ={{\rm e}^{-x-3\,\ln \left ( x \right ) }} results in y = -x+{\frac{C_{{1}}}{{{\rm e}^{-x-3\,\ln \left ( x \right ) }}}}
Initial conditions are now used to solve for C_{{1}}. Substituting x=1 and y={\rm e}-1 in the above solution gives an equation to solve for the constant of integration. \begin{align*}{\rm e}-1&=-1+C_{{1}}{\rm e} \end{align*}
Hence C_{{1}} = 1
The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +1/3\,y \left ( x \right ) =1/3\, \left ( 1-2\,x \right ) \left ( y \left ( x \right ) \right ) ^{4} \end{align*}
Trying Bernoulli ODE.
In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -y/3-2/3\,{y}^{4}x+1/3\,{y}^{4} \end{align*}
This is a Bernoulli ODE. Comparing the ODE to solve y' = -y/3-2/3\,{y}^{4}x+1/3\,{y}^{4}
Shows that f_0(x)=-1/3 and f_1(x)=-2/3\,x+1/3 and n=4.
Dividing the ODE by {y}^{4} gives \begin{align*} y'{y}^{-4} &= -1/3{y}^{-3} + -2/3\,x+1/3 \tag{1} \end{align*}
Let \begin{align*} v &={y}^{-3} \tag{2} \end{align*}
Taking derivative of (2) w.r.t x gives \begin{align*} v' &= -3\,{y}^{-4}y' \\{y}^{-4}&= \frac{v'}{-3\,y'} \tag{3} \end{align*}
Substituting (3) into (1) gives \begin{align*} \frac{v'}{(-3)} &= \left (-1/3\right ) v + -2/3\,x+1/3\\ v' &= (-3)\left (-1/3\right ) v + (-3)\left (-2/3\,x+1/3\right ) \\ &= v+2\,x-1 \end{align*}
The above now is a linear ODE in v(x) which can be easily solved using an integrating factor.
In canonical form, the ODE is written as \begin{align*} v' &= F(x,v)\\ &= v+2\,x-1 \end{align*}
The ODE is linear in v and has the form v' = v f(x) + g(x)
Writing the ODE as \begin{align*} v' - \left (v\right ) &= 2\,x-1\\ v' -v &= 2\,x-1 \end{align*}
Therefore the integrating factor \mu is \mu = e^{\int -1\mathop{\mathrm{d}x}} ={{\rm e}^{-x}}
Integrating both sides gives \begin{align*} v{{\rm e}^{-x}} &= - \left ( 2\,x+1 \right ){{\rm e}^{-x}} + C_1 \end{align*}
Dividing both sides by the integrating factor \mu ={{\rm e}^{-x}} results in v = -2\,x-1+{\frac{C_{{1}}}{{{\rm e}^{-x}}}}
Replacing v in the above by {y}^{-3} from equation (2), gives the final solution.
{y}^{-3}=-2\,x-1+C_{{1}}{{\rm e}^{x}}
The ODE to solve is \begin{align*} m{\frac{\rm d}{{\rm d}x}}v \left ( x \right ) =w-B-kv \left ( x \right ) \end{align*}
with initial conditions v \left ( 0 \right ) =0.
Trying separable ODE.
In canonical form, the ODE is written as \begin{align*} v' &= F(x,v)\\ &= -{\frac{kv+B-w}{m}} \end{align*}
The ODE \frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} = -{\frac{kv+B-w}{m}}, is separable. It can be written as \frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} = f( x) g(v)
\frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} ={\frac{-kv-B+w}{m}}
Solving for v gives v ={\frac{1}{k} \left ( -{{\rm e}^{-{\frac{k \left ( x+C_{{1}} \right ) }{m}}}}-B+w \right ) }
Initial conditions are now used to solve for C_{{1}}. Substituting x=0 and v=0 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 0&={\frac{1}{k} \left ( -{{\rm e}^{-{\frac{kC_{{1}}}{m}}}}-B+w \right ) } \end{align*}
Hence C_{{1}} = -{\frac{m\ln \left ( -B+w \right ) }{k}}
The solution \frac{1}{k} \left ( -{{\rm e}^{-{\frac{k}{m} \left ( x-{\frac{m\ln \left ( -B+w \right ) }{k}} \right ) }}}-B+w \right ) can be simplified to \begin{equation} \setlength{\fboxsep }{2.5\fboxsep }\boxed{v \left ( x \right ) ={\frac{1}{k} \left ( -{{\rm e}^{{\frac{m\ln \left ( -B+w \right ) -xk}{m}}}}-B+w \right ) }} \end{equation}
The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) ={x}^{3} \left ( y \left ( x \right ) -x \right ) ^{2}+{\frac{y \left ( x \right ) }{x}} \end{align*}
Trying Riccati ODE.
In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &={\frac{{x}^{6}-2\,{x}^{5}y+{x}^{4}{y}^{2}+y}{x}} \end{align*}
This is a Riccati ODE. Comparing the ODE to solve y' ={x}^{5}-2\,{x}^{4}y+{x}^{3}{y}^{2}+{\frac{y}{x}}
Shows that f_0(x)={x}^{5}, f_1(x)={\frac{-2\,{x}^{5}+1}{x}} and f_2(x)={x}^{3}.
Let \begin{align*} y &= \frac{-u'}{f_2 u} \\ &= \frac{-u'}{u{x}^{3}} \tag{1} \end{align*}
Using the above substitution in the given ODE results (after some simplification) in a second order ODE to solve for u(x) which is \begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag{2} \end{align*}
But \begin{align*} f_2' &=3\,{x}^{2}\\ f_1 f_2 &= \left ( -2\,{x}^{5}+1 \right ){x}^{2}\\ f_2^2 f_0 &={x}^{11} \end{align*}
Substituting the above terms back in (2) gives \begin{align*}{x}^{3}{\frac{{\rm d}^{2}}{{\rm d}{x}^{2}}}u \left ( x \right ) - \left ( 3\,{x}^{2}+ \left ( -2\,{x}^{5}+1 \right ){x}^{2} \right ){\frac{\rm d}{{\rm d}x}}u \left ( x \right ) +{x}^{11}u \left ( x \right ) &=0 \end{align*}
Solving the above ODE gives
u \left ( x \right ) ={{\rm e}^{-1/5\,{x}^{5}}} \left ({x}^{5}C_{{2}}+C_{{1}} \right )
\boxed{y \left ( x \right ) ={\frac{x \left ({x}^{5}+C_{{0}}-5 \right ) }{{x}^{5}+C_{{0}}}}}