Loading [MathJax]/jax/output/HTML-CSS/autoload/mtable.js

2.5 HW 5

  2.5.1 problems description
  2.5.2 problem 1
  2.5.3 problem 2
  2.5.4 problem 3
  2.5.5 problem 4
  2.5.6 Key solution
PDF (letter size)
PDF (legal size)

2.5.1 problems description

pict

2.5.2 problem 1

part a

The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +4\,y \left ( x \right ) =20 \end{align*}

with initial conditions y \left ( 0 \right ) =2.

Trying separable ODE.

In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -4\,y+20 \end{align*}

The ODE \frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = -4\,y+20, is separable. It can be written as \frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = f( x) g(y)

Where f(x)=1 and g(y)=-4\,y+20. Therefore

\frac{ \mathop{\mathrm{d}y}}{\mathop{\mathrm{d}x}} = -4\,y+20

Hence \begin{align*} \left ( -4\,y+20 \right ) ^{-1}\mathop{\mathrm{d}y}&= \mathop{\mathrm{d}x}\\ \int \left ( -4\,y+20 \right ) ^{-1}\mathop{\mathrm{d}y}&= \int \mathop{\mathrm{d}x}\\ -1/2\,\ln \left ( 2 \right ) -1/4\,\ln \left ( \left | y-5 \right | \right ) &=x+C_{{1}}\\ \end{align*}

Solving for y gives y = -1/4\,{{\rm e}^{-4\,x-4\,C_{{1}}}}+5

The solution above can be written as \begin{equation} \setlength{\fboxsep }{2.5\fboxsep }\boxed{y = -1/4\,C_{{1}}{{\rm e}^{-4\,x}}+5} \end{equation}

Initial conditions are now used to solve for C_{{1}}. Substituting x=0 and y=2 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 2&= -1/4\,C_{{1}}{{\rm e}^{0}}+5\\ &=-1/4\,C_{{1}}+5 \end{align*}

Hence C_{{1}} = 12\, \left ({{\rm e}^{0}} \right ) ^{-1}

Which is simplified to C_{{1}} = 12
Substituting C_1 found above back in the solution gives y \left ( x \right ) = -3\,{{\rm e}^{-4\,x}}+5

part b

The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +3\,y \left ( x \right ) =\sin \left ( x \right ) \end{align*}

with initial conditions y \left ( \pi /2 \right ) =3/10.

Trying Linear ODE.

In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -3\,y+\sin \left ( x \right ) \end{align*}

The ODE is linear in y and has the form y' = y f(x) + g(x)

Where f(x) = -3 and g(x) = \sin \left ( x \right ) .

Writing the ODE as \begin{align*} y' - \left (-3\,y\right ) &= \sin \left ( x \right ) \\ y' + 3\,y &= \sin \left ( x \right ) \end{align*}

Therefore the integrating factor \mu is \mu = e^{\int 3\mathop{\mathrm{d}x}} ={{\rm e}^{3\,x}}

The ode becomes \begin{align*} \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \mu y &= \mu \left (\sin \left ( x \right ) \right ) \\ \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \left (y{{\rm e}^{3\,x}}\right ) &= \sin \left ( x \right ){{\rm e}^{3\,x}}\\ \mathrm{d} \left (y{{\rm e}^{3\,x}}\right ) &= \left (\sin \left ( x \right ){{\rm e}^{3\,x}}\right ) \mathrm{d} x \end{align*}

Integrating both sides gives \begin{align*} y{{\rm e}^{3\,x}} &= -1/10\,\cos \left ( x \right ){{\rm e}^{3\,x}}+3/10\,\sin \left ( x \right ){{\rm e}^{3\,x}} + C_1 \end{align*}

Dividing both sides by the integrating factor \mu ={{\rm e}^{3\,x}} results in y ={\frac{-1/10\,\cos \left ( x \right ){{\rm e}^{3\,x}}+3/10\,\sin \left ( x \right ){{\rm e}^{3\,x}}}{{{\rm e}^{3\,x}}}}+{\frac{C_{{1}}}{{{\rm e}^{3\,x}}}}

Simplifying the solution gives \setlength{\fboxsep }{2.5\fboxsep }\boxed{y=3/10\,\sin \left ( x \right ) -1/10\,\cos \left ( x \right ) +C_{{1}}{{\rm e}^{-3\,x}}}

Initial conditions are now used to solve for C_{{1}}. Substituting x=\pi /2 and y=3/10 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 3/10&= 3/10\,\sin \left ( \pi /2 \right ) -1/10\,\cos \left ( \pi /2 \right ) +C_{{1}}{{\rm e}^{-3/2\,\pi }}\\ &=3/10+C_{{1}}{{\rm e}^{-3/2\,\pi }} \end{align*}

Hence C_{{1}} = -1/10\,{\frac{3\,\sin \left ( \pi /2 \right ) -\cos \left ( \pi /2 \right ) -3}{{{\rm e}^{-3/2\,\pi }}}}

Which is simplified to C_{{1}} = 0
Substituting C_1 found above back in the solution gives y \left ( x \right ) = 3/10\,\sin \left ( x \right ) -1/10\,\cos \left ( x \right )

part c

The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) -y \left ( x \right ) \left ( 1+3\,{x}^{-1} \right ) =x+2 \end{align*}

with initial conditions y \left ( 1 \right ) ={\rm e}-1.

Trying Linear ODE.

In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &={\frac{{x}^{2}+xy+2\,x+3\,y}{x}} \end{align*}

The ODE is linear in y and has the form y' = y f(x) + g(x)

Where f(x) ={\frac{x+3}{x}} and g(x) ={\frac{{x}^{2}+2\,x}{x}}.

Writing the ODE as \begin{align*} y' - \left ({\frac{ \left ( x+3 \right ) y}{x}}\right ) &={\frac{{x}^{2}+2\,x}{x}}\\ y' -{\frac{ \left ( x+3 \right ) y}{x}} &={\frac{{x}^{2}+2\,x}{x}} \end{align*}

Therefore the integrating factor \mu is \mu = e^{\int -{\frac{x+3}{x}}\mathop{\mathrm{d}x}} ={{\rm e}^{-x-3\,\ln \left ( x \right ) }}

The ode becomes \begin{align*} \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \mu y &= \mu \left ({\frac{{x}^{2}+2\,x}{x}}\right ) \\ \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \left (y{{\rm e}^{-x-3\,\ln \left ( x \right ) }}\right ) &={\frac{ \left ({x}^{2}+2\,x \right ){{\rm e}^{-x-3\,\ln \left ( x \right ) }}}{x}}\\ \mathrm{d} \left (y{{\rm e}^{-x-3\,\ln \left ( x \right ) }}\right ) &= \left ({\frac{ \left ({x}^{2}+2\,x \right ){{\rm e}^{-x-3\,\ln \left ( x \right ) }}}{x}}\right ) \mathrm{d} x \end{align*}

Integrating both sides gives \begin{align*} y{{\rm e}^{-x-3\,\ln \left ( x \right ) }} &= -{{\rm e}^{-x-3\,\ln \left ( x \right ) }}x + C_1 \end{align*}

Dividing both sides by the integrating factor \mu ={{\rm e}^{-x-3\,\ln \left ( x \right ) }} results in y = -x+{\frac{C_{{1}}}{{{\rm e}^{-x-3\,\ln \left ( x \right ) }}}}

Simplifying the solution gives \setlength{\fboxsep }{2.5\fboxsep }\boxed{y=-x+C_{{1}}{x}^{3}{{\rm e}^{x}}}

Initial conditions are now used to solve for C_{{1}}. Substituting x=1 and y={\rm e}-1 in the above solution gives an equation to solve for the constant of integration. \begin{align*}{\rm e}-1&=-1+C_{{1}}{\rm e} \end{align*}

Hence C_{{1}} = 1

Substituting C_1 found above back in the solution gives y \left ( x \right ) = -x+{x}^{3}{{\rm e}^{x}}

2.5.3 problem 2

The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) +1/3\,y \left ( x \right ) =1/3\, \left ( 1-2\,x \right ) \left ( y \left ( x \right ) \right ) ^{4} \end{align*}

Trying Bernoulli ODE.

In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &= -y/3-2/3\,{y}^{4}x+1/3\,{y}^{4} \end{align*}

This is a Bernoulli ODE. Comparing the ODE to solve y' = -y/3-2/3\,{y}^{4}x+1/3\,{y}^{4}

With Bernoulli ODE standard form y' = f_0(x)y+f_1(x)y^n

Shows that f_0(x)=-1/3 and f_1(x)=-2/3\,x+1/3 and n=4.

Dividing the ODE by {y}^{4} gives \begin{align*} y'{y}^{-4} &= -1/3{y}^{-3} + -2/3\,x+1/3 \tag{1} \end{align*}

Let \begin{align*} v &={y}^{-3} \tag{2} \end{align*}

Taking derivative of (2) w.r.t x gives \begin{align*} v' &= -3\,{y}^{-4}y' \\{y}^{-4}&= \frac{v'}{-3\,y'} \tag{3} \end{align*}

Substituting (3) into (1) gives \begin{align*} \frac{v'}{(-3)} &= \left (-1/3\right ) v + -2/3\,x+1/3\\ v' &= (-3)\left (-1/3\right ) v + (-3)\left (-2/3\,x+1/3\right ) \\ &= v+2\,x-1 \end{align*}

The above now is a linear ODE in v(x) which can be easily solved using an integrating factor.

In canonical form, the ODE is written as \begin{align*} v' &= F(x,v)\\ &= v+2\,x-1 \end{align*}

The ODE is linear in v and has the form v' = v f(x) + g(x)

Where f(x) = 1 and g(x) = 2\,x-1.

Writing the ODE as \begin{align*} v' - \left (v\right ) &= 2\,x-1\\ v' -v &= 2\,x-1 \end{align*}

Therefore the integrating factor \mu is \mu = e^{\int -1\mathop{\mathrm{d}x}} ={{\rm e}^{-x}}

The ode becomes \begin{align*} \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \mu v &= \mu \left (2\,x-1\right ) \\ \frac{\mathop{\mathrm{d}}}{ \mathop{\mathrm{d}x}} \left (v{{\rm e}^{-x}}\right ) &= \left ( 2\,x-1 \right ){{\rm e}^{-x}}\\ \mathrm{d} \left (v{{\rm e}^{-x}}\right ) &= \left ( \left ( 2\,x-1 \right ){{\rm e}^{-x}}\right ) \mathrm{d} x \end{align*}

Integrating both sides gives \begin{align*} v{{\rm e}^{-x}} &= - \left ( 2\,x+1 \right ){{\rm e}^{-x}} + C_1 \end{align*}

Dividing both sides by the integrating factor \mu ={{\rm e}^{-x}} results in v = -2\,x-1+{\frac{C_{{1}}}{{{\rm e}^{-x}}}}

Simplifying the solution gives \setlength{\fboxsep }{2.5\fboxsep }\boxed{v=-2\,x-1+C_{{1}}{{\rm e}^{x}}}

Replacing v in the above by {y}^{-3} from equation (2), gives the final solution.

{y}^{-3}=-2\,x-1+C_{{1}}{{\rm e}^{x}}

Solving for y gives \begin{align*} y &={\frac{1}{\sqrt [3]{-2\,x-1+C_{{1}}{{\rm e}^{x}}}}}\\ y &=-1/2\,{\frac{1}{\sqrt [3]{-2\,x-1+C_{{1}}{{\rm e}^{x}}}}}+{\frac{i/2\sqrt{3}}{\sqrt [3]{-2\,x-1+C_{{1}}{{\rm e}^{x}}}}}\\ y &=-1/2\,{\frac{1}{\sqrt [3]{-2\,x-1+C_{{1}}{{\rm e}^{x}}}}}-{\frac{i/2\sqrt{3}}{\sqrt [3]{-2\,x-1+C_{{1}}{{\rm e}^{x}}}}}\\ \end{align*}

2.5.4 problem 3

The ODE to solve is \begin{align*} m{\frac{\rm d}{{\rm d}x}}v \left ( x \right ) =w-B-kv \left ( x \right ) \end{align*}

with initial conditions v \left ( 0 \right ) =0.

Trying separable ODE.

In canonical form, the ODE is written as \begin{align*} v' &= F(x,v)\\ &= -{\frac{kv+B-w}{m}} \end{align*}

The ODE \frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} = -{\frac{kv+B-w}{m}}, is separable. It can be written as \frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} = f( x) g(v)

Where f(x)=1 and g(v)={\frac{-kv-B+w}{m}}. Therefore

\frac{ \mathop{\mathrm{d}v}}{\mathop{\mathrm{d}x}} ={\frac{-kv-B+w}{m}}

Hence \begin{align*} \left ({\frac{m}{-kv-B+w}}\right )\mathop{\mathrm{d}v}&= \mathop{\mathrm{d}x}\\ \int \left ({\frac{m}{-kv-B+w}}\right )\mathop{\mathrm{d}v}&= \int \mathop{\mathrm{d}x}\\ -{\frac{m\ln \left ( \left | kv+B-w \right | \right ) }{k}}&=x+C_{{1}}\\ \end{align*}

Solving for v gives v ={\frac{1}{k} \left ( -{{\rm e}^{-{\frac{k \left ( x+C_{{1}} \right ) }{m}}}}-B+w \right ) }

Initial conditions are now used to solve for C_{{1}}. Substituting x=0 and v=0 in the above solution gives an equation to solve for the constant of integration. \begin{align*} 0&={\frac{1}{k} \left ( -{{\rm e}^{-{\frac{kC_{{1}}}{m}}}}-B+w \right ) } \end{align*}

Hence C_{{1}} = -{\frac{m\ln \left ( -B+w \right ) }{k}}

Substituting C_1 found above back in the solution gives v \left ( x \right ) ={\frac{1}{k} \left ( -{{\rm e}^{-{\frac{k}{m} \left ( x-{\frac{m\ln \left ( -B+w \right ) }{k}} \right ) }}}-B+w \right ) }

The solution \frac{1}{k} \left ( -{{\rm e}^{-{\frac{k}{m} \left ( x-{\frac{m\ln \left ( -B+w \right ) }{k}} \right ) }}}-B+w \right ) can be simplified to \begin{equation} \setlength{\fboxsep }{2.5\fboxsep }\boxed{v \left ( x \right ) ={\frac{1}{k} \left ( -{{\rm e}^{{\frac{m\ln \left ( -B+w \right ) -xk}{m}}}}-B+w \right ) }} \end{equation}

2.5.5 problem 4

The ODE to solve is \begin{align*}{\frac{\rm d}{{\rm d}x}}y \left ( x \right ) ={x}^{3} \left ( y \left ( x \right ) -x \right ) ^{2}+{\frac{y \left ( x \right ) }{x}} \end{align*}

Trying Riccati ODE.

In canonical form, the ODE is written as \begin{align*} y' &= F(x,y)\\ &={\frac{{x}^{6}-2\,{x}^{5}y+{x}^{4}{y}^{2}+y}{x}} \end{align*}

This is a Riccati ODE. Comparing the ODE to solve y' ={x}^{5}-2\,{x}^{4}y+{x}^{3}{y}^{2}+{\frac{y}{x}}

With Riccati ODE standard form y' = f_0(x)+ f_1(x)y+f_2(x){y}^{2}

Shows that f_0(x)={x}^{5}, f_1(x)={\frac{-2\,{x}^{5}+1}{x}} and f_2(x)={x}^{3}.

Let \begin{align*} y &= \frac{-u'}{f_2 u} \\ &= \frac{-u'}{u{x}^{3}} \tag{1} \end{align*}

Using the above substitution in the given ODE results (after some simplification) in a second order ODE to solve for u(x) which is \begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag{2} \end{align*}

But \begin{align*} f_2' &=3\,{x}^{2}\\ f_1 f_2 &= \left ( -2\,{x}^{5}+1 \right ){x}^{2}\\ f_2^2 f_0 &={x}^{11} \end{align*}

Substituting the above terms back in (2) gives \begin{align*}{x}^{3}{\frac{{\rm d}^{2}}{{\rm d}{x}^{2}}}u \left ( x \right ) - \left ( 3\,{x}^{2}+ \left ( -2\,{x}^{5}+1 \right ){x}^{2} \right ){\frac{\rm d}{{\rm d}x}}u \left ( x \right ) +{x}^{11}u \left ( x \right ) &=0 \end{align*}

Solving the above ODE gives

u \left ( x \right ) ={{\rm e}^{-1/5\,{x}^{5}}} \left ({x}^{5}C_{{2}}+C_{{1}} \right )

The above shows that u'(x) = -{x}^{4}{{\rm e}^{-1/5\,{x}^{5}}} \left ({x}^{5}C_{{2}}+C_{{1}}-5\,C_{{2}} \right )
Hence, using the above in (1) gives the solution y \left ( x \right ) ={\frac{x \left ({x}^{5}C_{{2}}+C_{{1}}-5\,C_{{2}} \right ) }{{x}^{5}C_{{2}}+C_{{1}}}}
Dividing both numerator and denominator by C_2 gives, after renaming the constant \frac{C_1}{C_2}=C_0 the following

\boxed{y \left ( x \right ) ={\frac{x \left ({x}^{5}+C_{{0}}-5 \right ) }{{x}^{5}+C_{{0}}}}}

2.5.6 Key solution

pict

pict

pict

pict