3.1.48 \(\int \frac {1}{2+x^6} \, dx\) [48]

3.1.48.1 Optimal result
3.1.48.2 Mathematica [A] (verified)
3.1.48.3 Rubi [A] (verified)
3.1.48.4 Maple [C] (verified)
3.1.48.5 Fricas [A] (verification not implemented)
3.1.48.6 Sympy [A] (verification not implemented)
3.1.48.7 Maxima [A] (verification not implemented)
3.1.48.8 Giac [A] (verification not implemented)
3.1.48.9 Mupad [B] (verification not implemented)
3.1.48.10 Reduce [B] (verification not implemented)

3.1.48.1 Optimal result

Integrand size = 7, antiderivative size = 138 \[ \int \frac {1}{2+x^6} \, dx=\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}-\frac {\arctan \left (\sqrt {3}-2^{5/6} x\right )}{6\ 2^{5/6}}+\frac {\arctan \left (\sqrt {3}+2^{5/6} x\right )}{6\ 2^{5/6}}-\frac {\log \left (\sqrt [3]{2}-\sqrt [6]{2} \sqrt {3} x+x^2\right )}{4\ 2^{5/6} \sqrt {3}}+\frac {\log \left (\sqrt [3]{2}+\sqrt [6]{2} \sqrt {3} x+x^2\right )}{4\ 2^{5/6} \sqrt {3}} \]

output
1/6*arctan(1/2*x*2^(5/6))*2^(1/6)+1/12*arctan(x*2^(5/6)-3^(1/2))*2^(1/6)+1 
/12*arctan(x*2^(5/6)+3^(1/2))*2^(1/6)-1/24*ln(2^(1/3)+x^2-2^(1/6)*x*3^(1/2 
))*2^(1/6)*3^(1/2)+1/24*ln(2^(1/3)+x^2+2^(1/6)*x*3^(1/2))*2^(1/6)*3^(1/2)
 
3.1.48.2 Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.83 \[ \int \frac {1}{2+x^6} \, dx=\frac {4 \arctan \left (\frac {x}{\sqrt [6]{2}}\right )-2 \arctan \left (\sqrt {3}-2^{5/6} x\right )+2 \arctan \left (\sqrt {3}+2^{5/6} x\right )-\sqrt {3} \log \left (2-2^{5/6} \sqrt {3} x+2^{2/3} x^2\right )+\sqrt {3} \log \left (2+2^{5/6} \sqrt {3} x+2^{2/3} x^2\right )}{12\ 2^{5/6}} \]

input
Integrate[(2 + x^6)^(-1),x]
 
output
(4*ArcTan[x/2^(1/6)] - 2*ArcTan[Sqrt[3] - 2^(5/6)*x] + 2*ArcTan[Sqrt[3] + 
2^(5/6)*x] - Sqrt[3]*Log[2 - 2^(5/6)*Sqrt[3]*x + 2^(2/3)*x^2] + Sqrt[3]*Lo 
g[2 + 2^(5/6)*Sqrt[3]*x + 2^(2/3)*x^2])/(12*2^(5/6))
 
3.1.48.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.286, Rules used = {753, 27, 216, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^6+2} \, dx\)

\(\Big \downarrow \) 753

\(\displaystyle \frac {\int \frac {1}{x^2+\sqrt [3]{2}}dx}{3\ 2^{2/3}}+\frac {\int \frac {2 \sqrt [6]{2}-\sqrt {3} x}{2 \left (x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}\right )}dx}{3\ 2^{5/6}}+\frac {\int \frac {\sqrt {3} x+2 \sqrt [6]{2}}{2 \left (x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}\right )}dx}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {1}{x^2+\sqrt [3]{2}}dx}{3\ 2^{2/3}}+\frac {\int \frac {2 \sqrt [6]{2}-\sqrt {3} x}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\int \frac {\sqrt {3} x+2 \sqrt [6]{2}}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\int \frac {2 \sqrt [6]{2}-\sqrt {3} x}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\int \frac {\sqrt {3} x+2 \sqrt [6]{2}}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\int \frac {1}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}-\frac {1}{2} \sqrt {3} \int -\frac {\sqrt [6]{2} \left (\sqrt {3}-2^{5/6} x\right )}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\frac {\int \frac {1}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt [6]{2} \left (2^{5/6} x+\sqrt {3}\right )}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {1}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt [6]{2} \left (\sqrt {3}-2^{5/6} x\right )}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\frac {\int \frac {1}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {1}{2} \sqrt {3} \int \frac {\sqrt [6]{2} \left (2^{5/6} x+\sqrt {3}\right )}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {1}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {\sqrt {3} \int \frac {\sqrt {3}-2^{5/6} x}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}}{6\ 2^{5/6}}+\frac {\frac {\int \frac {1}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {\sqrt {3} \int \frac {2^{5/6} x+\sqrt {3}}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\sqrt {3} \int \frac {\sqrt {3}-2^{5/6} x}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\frac {\int \frac {1}{-\left (1-\frac {2^{5/6} x}{\sqrt {3}}\right )^2-\frac {1}{3}}d\left (1-\frac {2^{5/6} x}{\sqrt {3}}\right )}{\sqrt {3}}}{6\ 2^{5/6}}+\frac {\frac {\sqrt {3} \int \frac {2^{5/6} x+\sqrt {3}}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}-\frac {\int \frac {1}{-\left (\frac {2^{5/6} x}{\sqrt {3}}+1\right )^2-\frac {1}{3}}d\left (\frac {2^{5/6} x}{\sqrt {3}}+1\right )}{\sqrt {3}}}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\sqrt {3} \int \frac {\sqrt {3}-2^{5/6} x}{x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}-\arctan \left (\sqrt {3} \left (1-\frac {2^{5/6} x}{\sqrt {3}}\right )\right )}{6\ 2^{5/6}}+\frac {\frac {\sqrt {3} \int \frac {2^{5/6} x+\sqrt {3}}{x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}}dx}{2^{5/6}}+\arctan \left (\sqrt {3} \left (\frac {2^{5/6} x}{\sqrt {3}}+1\right )\right )}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {-\arctan \left (\sqrt {3} \left (1-\frac {2^{5/6} x}{\sqrt {3}}\right )\right )-\frac {1}{2} \sqrt {3} \log \left (x^2-\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}\right )}{6\ 2^{5/6}}+\frac {\arctan \left (\sqrt {3} \left (\frac {2^{5/6} x}{\sqrt {3}}+1\right )\right )+\frac {1}{2} \sqrt {3} \log \left (x^2+\sqrt [6]{2} \sqrt {3} x+\sqrt [3]{2}\right )}{6\ 2^{5/6}}+\frac {\arctan \left (\frac {x}{\sqrt [6]{2}}\right )}{3\ 2^{5/6}}\)

input
Int[(2 + x^6)^(-1),x]
 
output
ArcTan[x/2^(1/6)]/(3*2^(5/6)) + (-ArcTan[Sqrt[3]*(1 - (2^(5/6)*x)/Sqrt[3]) 
] - (Sqrt[3]*Log[2^(1/3) - 2^(1/6)*Sqrt[3]*x + x^2])/2)/(6*2^(5/6)) + (Arc 
Tan[Sqrt[3]*(1 + (2^(5/6)*x)/Sqrt[3])] + (Sqrt[3]*Log[2^(1/3) + 2^(1/6)*Sq 
rt[3]*x + x^2])/2)/(6*2^(5/6))
 

3.1.48.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 753
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/ 
b, n]], s = Denominator[Rt[a/b, n]], k, u, v}, Simp[u = Int[(r - s*Cos[(2*k 
 - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] + Int[ 
(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2* 
x^2), x]; 2*(r^2/(a*n))   Int[1/(r^2 + s^2*x^2), x] + 2*(r/(a*n))   Sum[u, 
{k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && PosQ[a 
/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.1.48.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.22 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.16

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+2\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}}\right )}{6}\) \(22\)
default \(\frac {\arctan \left (\frac {x 2^{\frac {5}{6}}}{2}\right ) 2^{\frac {1}{6}}}{6}+\frac {\arctan \left (x 2^{\frac {5}{6}}-\sqrt {3}\right ) 2^{\frac {1}{6}}}{12}+\frac {\arctan \left (x 2^{\frac {5}{6}}+\sqrt {3}\right ) 2^{\frac {1}{6}}}{12}-\frac {\ln \left (2^{\frac {1}{3}}+x^{2}-2^{\frac {1}{6}} x \sqrt {3}\right ) 2^{\frac {1}{6}} \sqrt {3}}{24}+\frac {\ln \left (2^{\frac {1}{3}}+x^{2}+2^{\frac {1}{6}} x \sqrt {3}\right ) 2^{\frac {1}{6}} \sqrt {3}}{24}\) \(95\)
meijerg \(\frac {2^{\frac {1}{6}} \left (-\frac {x \sqrt {3}\, \ln \left (1-\frac {\sqrt {3}\, 2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}{2}+\frac {2^{\frac {2}{3}} \left (x^{6}\right )^{\frac {1}{3}}}{2}\right )}{2 \left (x^{6}\right )^{\frac {1}{6}}}+\frac {x \arctan \left (\frac {2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}{4-\sqrt {3}\, 2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}\right )}{\left (x^{6}\right )^{\frac {1}{6}}}+\frac {2 x \arctan \left (\frac {2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}{2}\right )}{\left (x^{6}\right )^{\frac {1}{6}}}+\frac {x \sqrt {3}\, \ln \left (1+\frac {\sqrt {3}\, 2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}{2}+\frac {2^{\frac {2}{3}} \left (x^{6}\right )^{\frac {1}{3}}}{2}\right )}{2 \left (x^{6}\right )^{\frac {1}{6}}}+\frac {x \arctan \left (\frac {2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}{4+\sqrt {3}\, 2^{\frac {5}{6}} \left (x^{6}\right )^{\frac {1}{6}}}\right )}{\left (x^{6}\right )^{\frac {1}{6}}}\right )}{12}\) \(170\)

input
int(1/(x^6+2),x,method=_RETURNVERBOSE)
 
output
1/6*sum(1/_R^5*ln(x-_R),_R=RootOf(_Z^6+2))
 
3.1.48.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.19 \[ \int \frac {1}{2+x^6} \, dx=\frac {1}{384} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} + 1\right )} \log \left (32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} + 1\right )} + 32 \, x\right ) - \frac {1}{384} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} + 1\right )} \log \left (-32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} + 1\right )} + 32 \, x\right ) + \frac {1}{384} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} - 1\right )} \log \left (32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} - 1\right )} + 32 \, x\right ) - \frac {1}{384} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} - 1\right )} \log \left (-32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} {\left (\sqrt {-3} - 1\right )} + 32 \, x\right ) + \frac {1}{192} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} \log \left (32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} + 16 \, x\right ) - \frac {1}{192} \cdot 32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} \log \left (-32^{\frac {5}{6}} \left (-1\right )^{\frac {1}{6}} + 16 \, x\right ) \]

input
integrate(1/(x^6+2),x, algorithm="fricas")
 
output
1/384*32^(5/6)*(-1)^(1/6)*(sqrt(-3) + 1)*log(32^(5/6)*(-1)^(1/6)*(sqrt(-3) 
 + 1) + 32*x) - 1/384*32^(5/6)*(-1)^(1/6)*(sqrt(-3) + 1)*log(-32^(5/6)*(-1 
)^(1/6)*(sqrt(-3) + 1) + 32*x) + 1/384*32^(5/6)*(-1)^(1/6)*(sqrt(-3) - 1)* 
log(32^(5/6)*(-1)^(1/6)*(sqrt(-3) - 1) + 32*x) - 1/384*32^(5/6)*(-1)^(1/6) 
*(sqrt(-3) - 1)*log(-32^(5/6)*(-1)^(1/6)*(sqrt(-3) - 1) + 32*x) + 1/192*32 
^(5/6)*(-1)^(1/6)*log(32^(5/6)*(-1)^(1/6) + 16*x) - 1/192*32^(5/6)*(-1)^(1 
/6)*log(-32^(5/6)*(-1)^(1/6) + 16*x)
 
3.1.48.6 Sympy [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.10 \[ \int \frac {1}{2+x^6} \, dx=\operatorname {RootSum} {\left (1492992 t^{6} + 1, \left ( t \mapsto t \log {\left (12 t + x \right )} \right )\right )} \]

input
integrate(1/(x**6+2),x)
 
output
RootSum(1492992*_t**6 + 1, Lambda(_t, _t*log(12*_t + x)))
 
3.1.48.7 Maxima [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.78 \[ \int \frac {1}{2+x^6} \, dx=\frac {1}{24} \, \sqrt {3} 2^{\frac {1}{6}} \log \left (x^{2} + \sqrt {3} 2^{\frac {1}{6}} x + 2^{\frac {1}{3}}\right ) - \frac {1}{24} \, \sqrt {3} 2^{\frac {1}{6}} \log \left (x^{2} - \sqrt {3} 2^{\frac {1}{6}} x + 2^{\frac {1}{3}}\right ) + \frac {1}{12} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} {\left (2 \, x + \sqrt {3} 2^{\frac {1}{6}}\right )}\right ) + \frac {1}{12} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} {\left (2 \, x - \sqrt {3} 2^{\frac {1}{6}}\right )}\right ) + \frac {1}{6} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} x\right ) \]

input
integrate(1/(x^6+2),x, algorithm="maxima")
 
output
1/24*sqrt(3)*2^(1/6)*log(x^2 + sqrt(3)*2^(1/6)*x + 2^(1/3)) - 1/24*sqrt(3) 
*2^(1/6)*log(x^2 - sqrt(3)*2^(1/6)*x + 2^(1/3)) + 1/12*2^(1/6)*arctan(1/2* 
2^(5/6)*(2*x + sqrt(3)*2^(1/6))) + 1/12*2^(1/6)*arctan(1/2*2^(5/6)*(2*x - 
sqrt(3)*2^(1/6))) + 1/6*2^(1/6)*arctan(1/2*2^(5/6)*x)
 
3.1.48.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.78 \[ \int \frac {1}{2+x^6} \, dx=\frac {1}{24} \, \sqrt {3} 2^{\frac {1}{6}} \log \left (x^{2} + \sqrt {3} 2^{\frac {1}{6}} x + 2^{\frac {1}{3}}\right ) - \frac {1}{24} \, \sqrt {3} 2^{\frac {1}{6}} \log \left (x^{2} - \sqrt {3} 2^{\frac {1}{6}} x + 2^{\frac {1}{3}}\right ) + \frac {1}{12} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} {\left (2 \, x + \sqrt {3} 2^{\frac {1}{6}}\right )}\right ) + \frac {1}{12} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} {\left (2 \, x - \sqrt {3} 2^{\frac {1}{6}}\right )}\right ) + \frac {1}{6} \cdot 2^{\frac {1}{6}} \arctan \left (\frac {1}{2} \cdot 2^{\frac {5}{6}} x\right ) \]

input
integrate(1/(x^6+2),x, algorithm="giac")
 
output
1/24*sqrt(3)*2^(1/6)*log(x^2 + sqrt(3)*2^(1/6)*x + 2^(1/3)) - 1/24*sqrt(3) 
*2^(1/6)*log(x^2 - sqrt(3)*2^(1/6)*x + 2^(1/3)) + 1/12*2^(1/6)*arctan(1/2* 
2^(5/6)*(2*x + sqrt(3)*2^(1/6))) + 1/12*2^(1/6)*arctan(1/2*2^(5/6)*(2*x - 
sqrt(3)*2^(1/6))) + 1/6*2^(1/6)*arctan(1/2*2^(5/6)*x)
 
3.1.48.9 Mupad [B] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.98 \[ \int \frac {1}{2+x^6} \, dx=\frac {2^{1/6}\,\mathrm {atan}\left (\frac {2^{5/6}\,x}{2}\right )}{6}+\frac {2^{1/6}\,\mathrm {atan}\left (\frac {2^{1/6}\,x}{2\,\left (-\frac {2^{1/3}}{2}+\frac {2^{1/3}\,\sqrt {3}\,1{}\mathrm {i}}{2}\right )}+\frac {2^{1/6}\,\sqrt {3}\,x\,1{}\mathrm {i}}{2\,\left (-\frac {2^{1/3}}{2}+\frac {2^{1/3}\,\sqrt {3}\,1{}\mathrm {i}}{2}\right )}\right )\,\left (\sqrt {3}-\mathrm {i}\right )\,1{}\mathrm {i}}{12}+\frac {2^{1/6}\,\mathrm {atan}\left (\frac {2^{1/6}\,x}{2\,\left (\frac {2^{1/3}}{2}+\frac {2^{1/3}\,\sqrt {3}\,1{}\mathrm {i}}{2}\right )}-\frac {2^{1/6}\,\sqrt {3}\,x\,1{}\mathrm {i}}{2\,\left (\frac {2^{1/3}}{2}+\frac {2^{1/3}\,\sqrt {3}\,1{}\mathrm {i}}{2}\right )}\right )\,\left (\sqrt {3}+1{}\mathrm {i}\right )\,1{}\mathrm {i}}{12} \]

input
int(1/(x^6 + 2),x)
 
output
(2^(1/6)*atan((2^(5/6)*x)/2))/6 + (2^(1/6)*atan((2^(1/6)*x)/(2*((2^(1/3)*3 
^(1/2)*1i)/2 - 2^(1/3)/2)) + (2^(1/6)*3^(1/2)*x*1i)/(2*((2^(1/3)*3^(1/2)*1 
i)/2 - 2^(1/3)/2)))*(3^(1/2) - 1i)*1i)/12 + (2^(1/6)*atan((2^(1/6)*x)/(2*( 
(2^(1/3)*3^(1/2)*1i)/2 + 2^(1/3)/2)) - (2^(1/6)*3^(1/2)*x*1i)/(2*((2^(1/3) 
*3^(1/2)*1i)/2 + 2^(1/3)/2)))*(3^(1/2) + 1i)*1i)/12
 
3.1.48.10 Reduce [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.64 \[ \int \frac {1}{2+x^6} \, dx=\frac {2^{\frac {1}{6}} \left (-2 \mathit {atan} \left (\frac {\left (2^{\frac {1}{6}} \sqrt {3}-2 x \right ) 2^{\frac {5}{6}}}{2}\right )+2 \mathit {atan} \left (\frac {\left (2^{\frac {1}{6}} \sqrt {3}+2 x \right ) 2^{\frac {5}{6}}}{2}\right )+4 \mathit {atan} \left (\frac {x 2^{\frac {5}{6}}}{2}\right )-\sqrt {3}\, \mathrm {log}\left (-2^{\frac {1}{6}} \sqrt {3}\, x +2^{\frac {1}{3}}+x^{2}\right )+\sqrt {3}\, \mathrm {log}\left (2^{\frac {1}{6}} \sqrt {3}\, x +2^{\frac {1}{3}}+x^{2}\right )\right )}{24} \]

input
int(1/(x**6 + 2),x)
 
output
(2**(1/6)*( - 2*atan((2**(1/6)*sqrt(3) - 2*x)/2**(1/6)) + 2*atan((2**(1/6) 
*sqrt(3) + 2*x)/2**(1/6)) + 4*atan(x/2**(1/6)) - sqrt(3)*log( - 2**(1/6)*s 
qrt(3)*x + 2**(1/3) + x**2) + sqrt(3)*log(2**(1/6)*sqrt(3)*x + 2**(1/3) + 
x**2)))/24