3.1.49 \(\int \frac {1}{1+x^8} \, dx\) [49]

3.1.49.1 Optimal result
3.1.49.2 Mathematica [A] (verified)
3.1.49.3 Rubi [A] (verified)
3.1.49.4 Maple [C] (verified)
3.1.49.5 Fricas [C] (verification not implemented)
3.1.49.6 Sympy [A] (verification not implemented)
3.1.49.7 Maxima [F]
3.1.49.8 Giac [A] (verification not implemented)
3.1.49.9 Mupad [B] (verification not implemented)
3.1.49.10 Reduce [B] (verification not implemented)

3.1.49.1 Optimal result

Integrand size = 7, antiderivative size = 339 \[ \int \frac {1}{1+x^8} \, dx=-\frac {\arctan \left (\frac {\sqrt {2-\sqrt {2}}-2 x}{\sqrt {2+\sqrt {2}}}\right )}{4 \sqrt {2 \left (2-\sqrt {2}\right )}}-\frac {\arctan \left (\frac {\sqrt {2+\sqrt {2}}-2 x}{\sqrt {2-\sqrt {2}}}\right )}{4 \sqrt {2 \left (2+\sqrt {2}\right )}}+\frac {\arctan \left (\frac {\sqrt {2-\sqrt {2}}+2 x}{\sqrt {2+\sqrt {2}}}\right )}{4 \sqrt {2 \left (2-\sqrt {2}\right )}}+\frac {\arctan \left (\frac {\sqrt {2+\sqrt {2}}+2 x}{\sqrt {2-\sqrt {2}}}\right )}{4 \sqrt {2 \left (2+\sqrt {2}\right )}}-\frac {1}{16} \sqrt {2-\sqrt {2}} \log \left (1-\sqrt {2-\sqrt {2}} x+x^2\right )+\frac {1}{16} \sqrt {2-\sqrt {2}} \log \left (1+\sqrt {2-\sqrt {2}} x+x^2\right )-\frac {1}{16} \sqrt {2+\sqrt {2}} \log \left (1-\sqrt {2+\sqrt {2}} x+x^2\right )+\frac {1}{16} \sqrt {2+\sqrt {2}} \log \left (1+\sqrt {2+\sqrt {2}} x+x^2\right ) \]

output
-1/16*ln(1+x^2-x*(2-2^(1/2))^(1/2))*(2-2^(1/2))^(1/2)+1/16*ln(1+x^2+x*(2-2 
^(1/2))^(1/2))*(2-2^(1/2))^(1/2)-1/4*arctan((-2*x+(2-2^(1/2))^(1/2))/(2+2^ 
(1/2))^(1/2))/(4-2*2^(1/2))^(1/2)+1/4*arctan((2*x+(2-2^(1/2))^(1/2))/(2+2^ 
(1/2))^(1/2))/(4-2*2^(1/2))^(1/2)-1/16*ln(1+x^2-x*(2+2^(1/2))^(1/2))*(2+2^ 
(1/2))^(1/2)+1/16*ln(1+x^2+x*(2+2^(1/2))^(1/2))*(2+2^(1/2))^(1/2)-1/4*arct 
an((-2*x+(2+2^(1/2))^(1/2))/(2-2^(1/2))^(1/2))/(4+2*2^(1/2))^(1/2)+1/4*arc 
tan((2*x+(2+2^(1/2))^(1/2))/(2-2^(1/2))^(1/2))/(4+2*2^(1/2))^(1/2)
 
3.1.49.2 Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 209, normalized size of antiderivative = 0.62 \[ \int \frac {1}{1+x^8} \, dx=\frac {1}{4} \arctan \left (\sec \left (\frac {\pi }{8}\right ) \left (x-\sin \left (\frac {\pi }{8}\right )\right )\right ) \cos \left (\frac {\pi }{8}\right )+\frac {1}{4} \arctan \left (\sec \left (\frac {\pi }{8}\right ) \left (x+\sin \left (\frac {\pi }{8}\right )\right )\right ) \cos \left (\frac {\pi }{8}\right )-\frac {1}{8} \cos \left (\frac {\pi }{8}\right ) \log \left (1+x^2-2 x \cos \left (\frac {\pi }{8}\right )\right )+\frac {1}{8} \cos \left (\frac {\pi }{8}\right ) \log \left (1+x^2+2 x \cos \left (\frac {\pi }{8}\right )\right )+\frac {1}{4} \arctan \left (\left (x-\cos \left (\frac {\pi }{8}\right )\right ) \csc \left (\frac {\pi }{8}\right )\right ) \sin \left (\frac {\pi }{8}\right )+\frac {1}{4} \arctan \left (\left (x+\cos \left (\frac {\pi }{8}\right )\right ) \csc \left (\frac {\pi }{8}\right )\right ) \sin \left (\frac {\pi }{8}\right )-\frac {1}{8} \log \left (1+x^2-2 x \sin \left (\frac {\pi }{8}\right )\right ) \sin \left (\frac {\pi }{8}\right )+\frac {1}{8} \log \left (1+x^2+2 x \sin \left (\frac {\pi }{8}\right )\right ) \sin \left (\frac {\pi }{8}\right ) \]

input
Integrate[(1 + x^8)^(-1),x]
 
output
(ArcTan[Sec[Pi/8]*(x - Sin[Pi/8])]*Cos[Pi/8])/4 + (ArcTan[Sec[Pi/8]*(x + S 
in[Pi/8])]*Cos[Pi/8])/4 - (Cos[Pi/8]*Log[1 + x^2 - 2*x*Cos[Pi/8]])/8 + (Co 
s[Pi/8]*Log[1 + x^2 + 2*x*Cos[Pi/8]])/8 + (ArcTan[(x - Cos[Pi/8])*Csc[Pi/8 
]]*Sin[Pi/8])/4 + (ArcTan[(x + Cos[Pi/8])*Csc[Pi/8]]*Sin[Pi/8])/4 - (Log[1 
 + x^2 - 2*x*Sin[Pi/8]]*Sin[Pi/8])/8 + (Log[1 + x^2 + 2*x*Sin[Pi/8]]*Sin[P 
i/8])/8
 
3.1.49.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 343, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {757, 1483, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^8+1} \, dx\)

\(\Big \downarrow \) 757

\(\displaystyle \frac {\int \frac {\sqrt {2}-x^2}{x^4-\sqrt {2} x^2+1}dx}{2 \sqrt {2}}+\frac {\int \frac {x^2+\sqrt {2}}{x^4+\sqrt {2} x^2+1}dx}{2 \sqrt {2}}\)

\(\Big \downarrow \) 1483

\(\displaystyle \frac {\frac {\int \frac {\left (1-\sqrt {2}\right ) x+\sqrt {2 \left (2-\sqrt {2}\right )}}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\int \frac {\sqrt {2 \left (2-\sqrt {2}\right )}-\left (1-\sqrt {2}\right ) x}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\int \frac {\sqrt {2 \left (2+\sqrt {2}\right )}-\left (1+\sqrt {2}\right ) x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\int \frac {\left (1+\sqrt {2}\right ) x+\sqrt {2 \left (2+\sqrt {2}\right )}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2-\sqrt {2-\sqrt {2}} x+1}dx+\frac {1}{2} \left (1-\sqrt {2}\right ) \int -\frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2-\sqrt {2+\sqrt {2}} x+1}dx-\frac {1}{2} \left (1+\sqrt {2}\right ) \int -\frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2-\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2-\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx-\sqrt {2+\sqrt {2}} \int \frac {1}{-\left (2 x-\sqrt {2-\sqrt {2}}\right )^2-\sqrt {2}-2}d\left (2 x-\sqrt {2-\sqrt {2}}\right )}{2 \sqrt {2-\sqrt {2}}}+\frac {-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\sqrt {2+\sqrt {2}} \int \frac {1}{-\left (2 x+\sqrt {2-\sqrt {2}}\right )^2-\sqrt {2}-2}d\left (2 x+\sqrt {2-\sqrt {2}}\right )}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx-\sqrt {2-\sqrt {2}} \int \frac {1}{-\left (2 x-\sqrt {2+\sqrt {2}}\right )^2+\sqrt {2}-2}d\left (2 x-\sqrt {2+\sqrt {2}}\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx-\sqrt {2-\sqrt {2}} \int \frac {1}{-\left (2 x+\sqrt {2+\sqrt {2}}\right )^2+\sqrt {2}-2}d\left (2 x+\sqrt {2+\sqrt {2}}\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx+\arctan \left (\frac {2 x-\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\arctan \left (\frac {2 x+\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )+\frac {1}{2} \left (1-\sqrt {2}\right ) \log \left (x^2-\sqrt {2-\sqrt {2}} x+1\right )}{2 \sqrt {2-\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \log \left (x^2+\sqrt {2-\sqrt {2}} x+1\right )}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\arctan \left (\frac {2 x-\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )-\frac {1}{2} \left (1+\sqrt {2}\right ) \log \left (x^2-\sqrt {2+\sqrt {2}} x+1\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )+\frac {1}{2} \left (1+\sqrt {2}\right ) \log \left (x^2+\sqrt {2+\sqrt {2}} x+1\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\)

input
Int[(1 + x^8)^(-1),x]
 
output
((ArcTan[(-Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]] + ((1 - Sqrt[2])*Lo 
g[1 - Sqrt[2 - Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[2]]) + (ArcTan[(Sqrt 
[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]] - ((1 - Sqrt[2])*Log[1 + Sqrt[2 - 
Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[2]]))/(2*Sqrt[2]) + ((ArcTan[(-Sqrt 
[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]] - ((1 + Sqrt[2])*Log[1 - Sqrt[2 + 
Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 + Sqrt[2]]) + (ArcTan[(Sqrt[2 + Sqrt[2]] + 
 2*x)/Sqrt[2 - Sqrt[2]]] + ((1 + Sqrt[2])*Log[1 + Sqrt[2 + Sqrt[2]]*x + x^ 
2])/2)/(2*Sqrt[2 + Sqrt[2]]))/(2*Sqrt[2])
 

3.1.49.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 757
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
 4]], s = Denominator[Rt[a/b, 4]]}, Simp[r/(2*Sqrt[2]*a)   Int[(Sqrt[2]*r - 
 s*x^(n/4))/(r^2 - Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x] + Simp[r/(2*S 
qrt[2]*a)   Int[(Sqrt[2]*r + s*x^(n/4))/(r^2 + Sqrt[2]*r*s*x^(n/4) + s^2*x^ 
(n/2)), x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 1] && GtQ[a/b, 0]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 
3.1.49.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.06

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{8}\) \(22\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{7}}\right )}{8}\) \(22\)
meijerg \(-\frac {x \cos \left (\frac {\pi }{8}\right ) \ln \left (1-2 \cos \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}+\left (x^{8}\right )^{\frac {1}{4}}\right )}{8 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \sin \left (\frac {\pi }{8}\right ) \arctan \left (\frac {\sin \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}{1-\cos \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}\right )}{4 \left (x^{8}\right )^{\frac {1}{8}}}-\frac {x \cos \left (\frac {3 \pi }{8}\right ) \ln \left (1-2 \cos \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}+\left (x^{8}\right )^{\frac {1}{4}}\right )}{8 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \sin \left (\frac {3 \pi }{8}\right ) \arctan \left (\frac {\sin \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}{1-\cos \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}\right )}{4 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \cos \left (\frac {3 \pi }{8}\right ) \ln \left (1+2 \cos \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}+\left (x^{8}\right )^{\frac {1}{4}}\right )}{8 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \sin \left (\frac {3 \pi }{8}\right ) \arctan \left (\frac {\sin \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}{1+\cos \left (\frac {3 \pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}\right )}{4 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \cos \left (\frac {\pi }{8}\right ) \ln \left (1+2 \cos \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}+\left (x^{8}\right )^{\frac {1}{4}}\right )}{8 \left (x^{8}\right )^{\frac {1}{8}}}+\frac {x \sin \left (\frac {\pi }{8}\right ) \arctan \left (\frac {\sin \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}{1+\cos \left (\frac {\pi }{8}\right ) \left (x^{8}\right )^{\frac {1}{8}}}\right )}{4 \left (x^{8}\right )^{\frac {1}{8}}}\) \(276\)

input
int(1/(x^8+1),x,method=_RETURNVERBOSE)
 
output
1/8*sum(1/_R^7*ln(x-_R),_R=RootOf(_Z^8+1))
 
3.1.49.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.25 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.40 \[ \int \frac {1}{1+x^8} \, dx=\left (\frac {1}{16} i + \frac {1}{16}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x + \left (i + 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) - \left (\frac {1}{16} i - \frac {1}{16}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x - \left (i - 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) + \left (\frac {1}{16} i - \frac {1}{16}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x + \left (i - 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) - \left (\frac {1}{16} i + \frac {1}{16}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x - \left (i + 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) + \frac {1}{8} \, \left (-1\right )^{\frac {1}{8}} \log \left (x + \left (-1\right )^{\frac {1}{8}}\right ) + \frac {1}{8} i \, \left (-1\right )^{\frac {1}{8}} \log \left (x + i \, \left (-1\right )^{\frac {1}{8}}\right ) - \frac {1}{8} i \, \left (-1\right )^{\frac {1}{8}} \log \left (x - i \, \left (-1\right )^{\frac {1}{8}}\right ) - \frac {1}{8} \, \left (-1\right )^{\frac {1}{8}} \log \left (x - \left (-1\right )^{\frac {1}{8}}\right ) \]

input
integrate(1/(x^8+1),x, algorithm="fricas")
 
output
(1/16*I + 1/16)*sqrt(2)*(-1)^(1/8)*log(2*x + (I + 1)*sqrt(2)*(-1)^(1/8)) - 
 (1/16*I - 1/16)*sqrt(2)*(-1)^(1/8)*log(2*x - (I - 1)*sqrt(2)*(-1)^(1/8)) 
+ (1/16*I - 1/16)*sqrt(2)*(-1)^(1/8)*log(2*x + (I - 1)*sqrt(2)*(-1)^(1/8)) 
 - (1/16*I + 1/16)*sqrt(2)*(-1)^(1/8)*log(2*x - (I + 1)*sqrt(2)*(-1)^(1/8) 
) + 1/8*(-1)^(1/8)*log(x + (-1)^(1/8)) + 1/8*I*(-1)^(1/8)*log(x + I*(-1)^( 
1/8)) - 1/8*I*(-1)^(1/8)*log(x - I*(-1)^(1/8)) - 1/8*(-1)^(1/8)*log(x - (- 
1)^(1/8))
 
3.1.49.6 Sympy [A] (verification not implemented)

Time = 1.34 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.04 \[ \int \frac {1}{1+x^8} \, dx=\operatorname {RootSum} {\left (16777216 t^{8} + 1, \left ( t \mapsto t \log {\left (8 t + x \right )} \right )\right )} \]

input
integrate(1/(x**8+1),x)
 
output
RootSum(16777216*_t**8 + 1, Lambda(_t, _t*log(8*_t + x)))
 
3.1.49.7 Maxima [F]

\[ \int \frac {1}{1+x^8} \, dx=\int { \frac {1}{x^{8} + 1} \,d x } \]

input
integrate(1/(x^8+1),x, algorithm="maxima")
 
output
integrate(1/(x^8 + 1), x)
 
3.1.49.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.71 \[ \int \frac {1}{1+x^8} \, dx=\frac {1}{8} \, \sqrt {\sqrt {2} + 2} \arctan \left (\frac {2 \, x + \sqrt {-\sqrt {2} + 2}}{\sqrt {\sqrt {2} + 2}}\right ) + \frac {1}{8} \, \sqrt {\sqrt {2} + 2} \arctan \left (\frac {2 \, x - \sqrt {-\sqrt {2} + 2}}{\sqrt {\sqrt {2} + 2}}\right ) + \frac {1}{8} \, \sqrt {-\sqrt {2} + 2} \arctan \left (\frac {2 \, x + \sqrt {\sqrt {2} + 2}}{\sqrt {-\sqrt {2} + 2}}\right ) + \frac {1}{8} \, \sqrt {-\sqrt {2} + 2} \arctan \left (\frac {2 \, x - \sqrt {\sqrt {2} + 2}}{\sqrt {-\sqrt {2} + 2}}\right ) + \frac {1}{16} \, \sqrt {\sqrt {2} + 2} \log \left (x^{2} + x \sqrt {\sqrt {2} + 2} + 1\right ) - \frac {1}{16} \, \sqrt {\sqrt {2} + 2} \log \left (x^{2} - x \sqrt {\sqrt {2} + 2} + 1\right ) + \frac {1}{16} \, \sqrt {-\sqrt {2} + 2} \log \left (x^{2} + x \sqrt {-\sqrt {2} + 2} + 1\right ) - \frac {1}{16} \, \sqrt {-\sqrt {2} + 2} \log \left (x^{2} - x \sqrt {-\sqrt {2} + 2} + 1\right ) \]

input
integrate(1/(x^8+1),x, algorithm="giac")
 
output
1/8*sqrt(sqrt(2) + 2)*arctan((2*x + sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) 
 + 1/8*sqrt(sqrt(2) + 2)*arctan((2*x - sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 
2)) + 1/8*sqrt(-sqrt(2) + 2)*arctan((2*x + sqrt(sqrt(2) + 2))/sqrt(-sqrt(2 
) + 2)) + 1/8*sqrt(-sqrt(2) + 2)*arctan((2*x - sqrt(sqrt(2) + 2))/sqrt(-sq 
rt(2) + 2)) + 1/16*sqrt(sqrt(2) + 2)*log(x^2 + x*sqrt(sqrt(2) + 2) + 1) - 
1/16*sqrt(sqrt(2) + 2)*log(x^2 - x*sqrt(sqrt(2) + 2) + 1) + 1/16*sqrt(-sqr 
t(2) + 2)*log(x^2 + x*sqrt(-sqrt(2) + 2) + 1) - 1/16*sqrt(-sqrt(2) + 2)*lo 
g(x^2 - x*sqrt(-sqrt(2) + 2) + 1)
 
3.1.49.9 Mupad [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 288, normalized size of antiderivative = 0.85 \[ \int \frac {1}{1+x^8} \, dx=\mathrm {atan}\left (\frac {x\,\sqrt {-\sqrt {2}-2}\,1{}\mathrm {i}}{\sqrt {2-\sqrt {2}}\,\sqrt {-\sqrt {2}-2}+\sqrt {2}}-\frac {x\,\sqrt {2-\sqrt {2}}\,1{}\mathrm {i}}{\sqrt {2-\sqrt {2}}\,\sqrt {-\sqrt {2}-2}+\sqrt {2}}\right )\,\left (\frac {\sqrt {-\sqrt {2}-2}\,1{}\mathrm {i}}{8}-\frac {\sqrt {2-\sqrt {2}}\,1{}\mathrm {i}}{8}\right )-\mathrm {atan}\left (\frac {x\,\sqrt {\sqrt {2}-2}\,1{}\mathrm {i}}{\sqrt {2}+\sqrt {\sqrt {2}-2}\,\sqrt {\sqrt {2}+2}}+\frac {x\,\sqrt {\sqrt {2}+2}\,1{}\mathrm {i}}{\sqrt {2}+\sqrt {\sqrt {2}-2}\,\sqrt {\sqrt {2}+2}}\right )\,\left (\frac {\sqrt {\sqrt {2}-2}\,1{}\mathrm {i}}{8}+\frac {\sqrt {\sqrt {2}+2}\,1{}\mathrm {i}}{8}\right )+\mathrm {atan}\left (-\frac {\sqrt {2}\,x\,\sqrt {\sqrt {2}+2}}{2}+x\,\sqrt {\sqrt {2}+2}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {\sqrt {2}\,1{}\mathrm {i}}{16}-\frac {1}{16}-\frac {1}{16}{}\mathrm {i}\right )\,\sqrt {\sqrt {2}+2}\,2{}\mathrm {i}-\mathrm {atan}\left (x\,\sqrt {\sqrt {2}+2}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )+\frac {\sqrt {2}\,x\,\sqrt {\sqrt {2}+2}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {\sqrt {2}}{16}-\frac {1}{16}+\frac {1}{16}{}\mathrm {i}\right )\,\sqrt {\sqrt {2}+2}\,2{}\mathrm {i} \]

input
int(1/(x^8 + 1),x)
 
output
atan((x*(- 2^(1/2) - 2)^(1/2)*1i)/((2 - 2^(1/2))^(1/2)*(- 2^(1/2) - 2)^(1/ 
2) + 2^(1/2)) - (x*(2 - 2^(1/2))^(1/2)*1i)/((2 - 2^(1/2))^(1/2)*(- 2^(1/2) 
 - 2)^(1/2) + 2^(1/2)))*(((- 2^(1/2) - 2)^(1/2)*1i)/8 - ((2 - 2^(1/2))^(1/ 
2)*1i)/8) - atan((x*(2^(1/2) - 2)^(1/2)*1i)/(2^(1/2) + (2^(1/2) - 2)^(1/2) 
*(2^(1/2) + 2)^(1/2)) + (x*(2^(1/2) + 2)^(1/2)*1i)/(2^(1/2) + (2^(1/2) - 2 
)^(1/2)*(2^(1/2) + 2)^(1/2)))*(((2^(1/2) - 2)^(1/2)*1i)/8 + ((2^(1/2) + 2) 
^(1/2)*1i)/8) + atan(x*(2^(1/2) + 2)^(1/2)*(1/2 + 1i/2) - (2^(1/2)*x*(2^(1 
/2) + 2)^(1/2))/2)*((2^(1/2)*1i)/16 - (1/16 + 1i/16))*(2^(1/2) + 2)^(1/2)* 
2i - atan(x*(2^(1/2) + 2)^(1/2)*(1/2 - 1i/2) + (2^(1/2)*x*(2^(1/2) + 2)^(1 
/2)*1i)/2)*(2^(1/2)/16 - (1/16 - 1i/16))*(2^(1/2) + 2)^(1/2)*2i
 
3.1.49.10 Reduce [B] (verification not implemented)

Time = 0.00 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.60 \[ \int \frac {1}{1+x^8} \, dx=-\frac {\sqrt {\sqrt {2}+2}\, \mathit {atan} \left (\frac {\sqrt {-\sqrt {2}+2}-2 x}{\sqrt {\sqrt {2}+2}}\right )}{8}+\frac {\sqrt {\sqrt {2}+2}\, \mathit {atan} \left (\frac {\sqrt {-\sqrt {2}+2}+2 x}{\sqrt {\sqrt {2}+2}}\right )}{8}-\frac {\sqrt {-\sqrt {2}+2}\, \mathit {atan} \left (\frac {\sqrt {\sqrt {2}+2}-2 x}{\sqrt {-\sqrt {2}+2}}\right )}{8}+\frac {\sqrt {-\sqrt {2}+2}\, \mathit {atan} \left (\frac {\sqrt {\sqrt {2}+2}+2 x}{\sqrt {-\sqrt {2}+2}}\right )}{8}-\frac {\sqrt {-\sqrt {2}+2}\, \mathrm {log}\left (-\sqrt {-\sqrt {2}+2}\, x +x^{2}+1\right )}{16}+\frac {\sqrt {-\sqrt {2}+2}\, \mathrm {log}\left (\sqrt {-\sqrt {2}+2}\, x +x^{2}+1\right )}{16}-\frac {\sqrt {\sqrt {2}+2}\, \mathrm {log}\left (-\sqrt {\sqrt {2}+2}\, x +x^{2}+1\right )}{16}+\frac {\sqrt {\sqrt {2}+2}\, \mathrm {log}\left (\sqrt {\sqrt {2}+2}\, x +x^{2}+1\right )}{16} \]

input
int(1/(x**8 + 1),x)
 
output
( - 2*sqrt(sqrt(2) + 2)*atan((sqrt( - sqrt(2) + 2) - 2*x)/sqrt(sqrt(2) + 2 
)) + 2*sqrt(sqrt(2) + 2)*atan((sqrt( - sqrt(2) + 2) + 2*x)/sqrt(sqrt(2) + 
2)) - 2*sqrt( - sqrt(2) + 2)*atan((sqrt(sqrt(2) + 2) - 2*x)/sqrt( - sqrt(2 
) + 2)) + 2*sqrt( - sqrt(2) + 2)*atan((sqrt(sqrt(2) + 2) + 2*x)/sqrt( - sq 
rt(2) + 2)) - sqrt( - sqrt(2) + 2)*log( - sqrt( - sqrt(2) + 2)*x + x**2 + 
1) + sqrt( - sqrt(2) + 2)*log(sqrt( - sqrt(2) + 2)*x + x**2 + 1) - sqrt(sq 
rt(2) + 2)*log( - sqrt(sqrt(2) + 2)*x + x**2 + 1) + sqrt(sqrt(2) + 2)*log( 
sqrt(sqrt(2) + 2)*x + x**2 + 1))/16