Integral number [116] \[ \int \frac{\cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.37931 (sec), size = 177 ,normalized size = 8.05 \[ \frac{6 \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac{4}{3};\frac{11}{6};\frac{1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{a^2+2 a b x+b^2 x^2+1}\right )}{20 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (a^2+2 a b x+b^2 x^2+1\right )^{4/3}} \]
[In]
[Out]
Integral number [117] \[ \int \frac{\cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.0850221 (sec), size = 180 ,normalized size = 7.5 \[ \frac{c \left (6 \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (4 (a+b x) \, _2F_1\left (1,\frac{4}{3};\frac{11}{6};\frac{1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)+5 \left (a^2+2 a b x+b^2 x^2+1\right ) \left (2 (a+b x) \cot ^{-1}(a+b x)-3\right )\right )-5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{a^2+2 a b x+b^2 x^2+1}\right )\right )}{20 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (c \left (a^2+2 a b x+b^2 x^2+1\right )\right )^{4/3}} \]
[In]
[Out]
Integral number [120] \[ \int \frac{(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.920116 (sec), size = 198 ,normalized size = 6.83 \[ \frac{3 \left (5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{a^2+2 a b x+b^2 x^2+1}\right )+\text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac{4}{3};\frac{11}{6};\frac{1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \sqrt [3]{a^2+2 a b x+b^2 x^2+1} \left ((a+b x)^2+1\right )} \]
[In]
[Out]
Integral number [121] \[ \int \frac{(a+b x)^2 \cot ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.204658 (sec), size = 200 ,normalized size = 6.45 \[ \frac{3 \left (5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{a^2+2 a b x+b^2 x^2+1}\right )+\text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (5 \left ((a+b x)^2+1\right ) \left (3 \left ((a+b x)^2+7\right )+4 (a+b x) \left ((a+b x)^2-2\right ) \cot ^{-1}(a+b x)\right )-24 (a+b x) \, _2F_1\left (1,\frac{4}{3};\frac{11}{6};\frac{1}{a^2+2 b x a+b^2 x^2+1}\right ) \cot ^{-1}(a+b x)\right )\right )}{140 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left ((a+b x)^2+1\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]