Integral number [74] \[ \int \frac{\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.483965 (sec), size = 826 ,normalized size = 25.81 \[ \frac{\cosh (3 (c+d x)) a^3+27 b \sinh (c+d x) a^2-b \sinh (3 (c+d x)) a^2-9 \left (a^2+3 b^2\right ) \cosh (c+d x) a-b^2 \cosh (3 (c+d x)) a-2 b \text{RootSum}\left [a \text{$\#$1}^6+b \text{$\#$1}^6+3 a \text{$\#$1}^4-3 b \text{$\#$1}^4+3 a \text{$\#$1}^2+3 b \text{$\#$1}^2+a-b\& ,\frac{3 a^2 c \text{$\#$1}^4+3 b^2 c \text{$\#$1}^4-3 a b c \text{$\#$1}^4+3 a^2 d x \text{$\#$1}^4+3 b^2 d x \text{$\#$1}^4-3 a b d x \text{$\#$1}^4+6 a^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right ) \text{$\#$1}^4+6 b^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right ) \text{$\#$1}^4-6 a b \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right ) \text{$\#$1}^4+2 a^2 c \text{$\#$1}^2-2 b^2 c \text{$\#$1}^2+2 a^2 d x \text{$\#$1}^2-2 b^2 d x \text{$\#$1}^2+4 a^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right ) \text{$\#$1}^2-4 b^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right ) \text{$\#$1}^2+3 a^2 c+3 b^2 c+3 a b c+3 a^2 d x+3 b^2 d x+3 a b d x+6 a^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right )+6 b^2 \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right )+6 a b \log \left (\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right ) \text{$\#$1}\right )}{a \text{$\#$1}^5+b \text{$\#$1}^5+2 a \text{$\#$1}^3-2 b \text{$\#$1}^3+a \text{$\#$1}+b \text{$\#$1}}\& \right ] a+9 b^3 \sinh (c+d x)+b^3 \sinh (3 (c+d x))}{12 (a-b)^2 (a+b)^2 d} \]
[In]
[Out]
Integral number [76] \[ \int \frac{\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.226157 (sec), size = 409 ,normalized size = 13.63 \[ \frac{b \text{RootSum}\left [\text{$\#$1}^6 a+3 \text{$\#$1}^4 a+3 \text{$\#$1}^2 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b+a-b\& ,\frac{4 \text{$\#$1}^4 a \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+2 \text{$\#$1}^4 a c+2 \text{$\#$1}^4 a d x-2 \text{$\#$1}^4 b \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )-\text{$\#$1}^4 b c-\text{$\#$1}^4 b d x+4 a \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+2 b \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+2 a c+2 a d x+b c+b d x}{\text{$\#$1}^5 a+2 \text{$\#$1}^3 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} a+\text{$\#$1} b}\& \right ]+6 a \cosh (c+d x)-6 b \sinh (c+d x)}{6 d (a-b) (a+b)} \]
[In]
[Out]
Integral number [77] \[ \int \frac{\text{csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.158439 (sec), size = 319 ,normalized size = 10.63 \[ \frac{6 \log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )-b \text{RootSum}\left [\text{$\#$1}^6 a+3 \text{$\#$1}^4 a+3 \text{$\#$1}^2 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b+a-b\& ,\frac{2 \text{$\#$1}^4 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )-4 \text{$\#$1}^2 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+\text{$\#$1}^4 c-2 \text{$\#$1}^2 c+\text{$\#$1}^4 d x-2 \text{$\#$1}^2 d x+2 \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+c+d x}{\text{$\#$1}^5 a+2 \text{$\#$1}^3 a+\text{$\#$1}^5 b-2 \text{$\#$1}^3 b+\text{$\#$1} a+\text{$\#$1} b}\& \right ]}{6 a d} \]
[In]
[Out]
Integral number [79] \[ \int \frac{\text{csch}^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.361888 (sec), size = 201 ,normalized size = 6.28 \[ -\frac{16 b \text{RootSum}\left [\text{$\#$1}^6 a+3 \text{$\#$1}^4 a+3 \text{$\#$1}^2 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b+a-b\& ,\frac{2 \text{$\#$1} \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+\text{$\#$1} c+\text{$\#$1} d x}{\text{$\#$1}^4 a+2 \text{$\#$1}^2 a+\text{$\#$1}^4 b-2 \text{$\#$1}^2 b+a+b}\& \right ]+3 \left (\text{csch}^2\left (\frac{1}{2} (c+d x)\right )+\text{sech}^2\left (\frac{1}{2} (c+d x)\right )+4 \log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )\right )}{24 a d} \]
[In]
[Out]
Integral number [74] \[ \int \frac{\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.11 (sec), size = 346 ,normalized size = 10.81 \[ -8\,{\frac{1}{d \left ( 16\,a-16\,b \right ) \left ( \tanh \left ( 1/2\,dx+c/2 \right ) +1 \right ) ^{2}}}+{\frac{16}{3\,d \left ( 16\,a-16\,b \right ) } \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}-{\frac{a}{2\,d \left ( a-b \right ) ^{2}} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{b}{d \left ( a-b \right ) ^{2}} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{16}{3\,d \left ( 16\,a+16\,b \right ) } \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-3}}-8\,{\frac{1}{d \left ( 16\,a+16\,b \right ) \left ( \tanh \left ( 1/2\,dx+c/2 \right ) -1 \right ) ^{2}}}+{\frac{a}{2\,d \left ( a+b \right ) ^{2}} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{b}{d \left ( a+b \right ) ^{2}} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}-{\frac{ab}{3\,d \left ( a+b \right ) ^{2} \left ( a-b \right ) ^{2}}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{ \left ( 2\,{a}^{2}+{b}^{2} \right ){{\it \_R}}^{4}-6\,{{\it \_R}}^{3}ab+2\, \left ( 4\,{a}^{2}+5\,{b}^{2} \right ){{\it \_R}}^{2}-6\,ab{\it \_R}+2\,{a}^{2}+{b}^{2}}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [76] \[ \int \frac{\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.108 (sec), size = 164 ,normalized size = 5.47 \[ -4\,{\frac{1}{d \left ( 4\,a+4\,b \right ) \left ( \tanh \left ( 1/2\,dx+c/2 \right ) -1 \right ) }}+{\frac{b}{3\,d \left ( a-b \right ) \left ( a+b \right ) }\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{4}a-2\,{{\it \_R}}^{3}b+6\,{{\it \_R}}^{2}a-2\,{\it \_R}\,b+a}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }}+4\,{\frac{1}{d \left ( 4\,a-4\,b \right ) \left ( \tanh \left ( 1/2\,dx+c/2 \right ) +1 \right ) }} \]
[In]
[Out]
Integral number [77] \[ \int \frac{\text{csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.105 (sec), size = 98 ,normalized size = 3.27 \[{\frac{1}{da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{4\,b}{3\,da}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{2}}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [79] \[ \int \frac{\text{csch}^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 0.125 (sec), size = 144 ,normalized size = 4.5 \[{\frac{1}{8\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{8\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}-{\frac{1}{2\,da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }-{\frac{b}{3\,da}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}+3\,a{{\it \_Z}}^{4}+8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}+a \right ) }{\frac{{{\it \_R}}^{4}-2\,{{\it \_R}}^{2}+1}{{{\it \_R}}^{5}a+2\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \]
[In]
[Out]
Integral number [74] \[ \int \frac{\sinh ^3(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 2.05765 (sec), size = 473 ,normalized size = 14.78 \[ -\frac{\frac{{\left (9 \, a e^{\left (2 \, d x + 2 \, c\right )} + 9 \, b e^{\left (2 \, d x + 2 \, c\right )} - a + b\right )} e^{\left (-3 \, d x\right )}}{a^{2} e^{\left (3 \, c\right )} - 2 \, a b e^{\left (3 \, c\right )} + b^{2} e^{\left (3 \, c\right )}} - \frac{a^{2} e^{\left (3 \, d x + 30 \, c\right )} + 2 \, a b e^{\left (3 \, d x + 30 \, c\right )} + b^{2} e^{\left (3 \, d x + 30 \, c\right )} - 9 \, a^{2} e^{\left (d x + 28 \, c\right )} + 9 \, b^{2} e^{\left (d x + 28 \, c\right )}}{a^{3} e^{\left (27 \, c\right )} + 3 \, a^{2} b e^{\left (27 \, c\right )} + 3 \, a b^{2} e^{\left (27 \, c\right )} + b^{3} e^{\left (27 \, c\right )}}}{24 \, d} - \frac{\frac{6 \,{\left (a^{3} b e^{c} + a^{2} b^{2} e^{c} + a b^{3} e^{c}\right )} d x}{a d - b d} - \frac{{\left (a^{3} b e^{c} + a^{2} b^{2} e^{c} + a b^{3} e^{c}\right )} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a d - b d}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} d} \]
[In]
[Out]
Integral number [76] \[ \int \frac{\sinh (c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 1.62107 (sec), size = 263 ,normalized size = 8.77 \[ \frac{\frac{e^{\left (d x + 8 \, c\right )}}{a e^{\left (7 \, c\right )} + b e^{\left (7 \, c\right )}} + \frac{e^{\left (-d x\right )}}{a e^{c} - b e^{c}}}{2 \, d} + \frac{\frac{6 \,{\left (2 \, a b e^{c} + b^{2} e^{c}\right )} d x}{a d - b d} - \frac{{\left (2 \, a b e^{c} + b^{2} e^{c}\right )} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a d - b d}}{3 \,{\left (a^{2} - b^{2}\right )} d} \]
[In]
[Out]
Integral number [77] \[ \int \frac{\text{csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx \]
[B] time = 1.45323 (sec), size = 207 ,normalized size = 6.9 \[ -\frac{\frac{\log \left (e^{\left (d x + c\right )} + 1\right )}{a} - \frac{\log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a}}{d} - \frac{\frac{6 \, b d x e^{c}}{a d - b d} - \frac{b e^{c} \log \left ({\left | a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 3 \, a e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a e^{\left (2 \, d x + 2 \, c\right )} + 3 \, b e^{\left (2 \, d x + 2 \, c\right )} + a - b \right |}\right )}{a d - b d}}{3 \, a d} \]
[In]
[Out]