Optimal. Leaf size=28 \[ 3 \left (-\frac {e^3}{x}+\frac {-\frac {2}{e}+\frac {x^5}{4}}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 24, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14} \begin {gather*} \frac {3 x^3}{4}-\frac {6}{e x^2}-\frac {3 e^3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {\frac {48}{e}+12 e^3 x+9 x^5}{x^3} \, dx\\ &=\frac {1}{4} \int \left (\frac {48}{e x^3}+\frac {12 e^3}{x^2}+9 x^2\right ) \, dx\\ &=-\frac {6}{e x^2}-\frac {3 e^3}{x}+\frac {3 x^3}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 26, normalized size = 0.93 \begin {gather*} \frac {3 \left (-\frac {8}{x^2}-\frac {4 e^4}{x}+e x^3\right )}{4 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 36, normalized size = 1.29 \begin {gather*} \frac {3 \, {\left (x^{5} e^{\left (3 \, \log \relax (2) - 3\right )} - 32 \, x - 4 \, e^{\left (4 \, \log \relax (2) - 4\right )}\right )} e^{\left (-3 \, \log \relax (2) + 3\right )}}{4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 0.75 \begin {gather*} \frac {3}{4} \, x^{3} - \frac {3 \, {\left (x e^{3} + e^{\left (\log \relax (2) - 1\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.79
method | result | size |
norman | \(\frac {\frac {3 x^{5}}{4}-6 \,{\mathrm e}^{-1}-3 x \,{\mathrm e}^{3}}{x^{2}}\) | \(22\) |
risch | \(\frac {3 x^{3}}{4}+\frac {\left (-24 \,{\mathrm e}^{-4}-12 x \right ) {\mathrm e}^{3}}{4 x^{2}}\) | \(22\) |
gosper | \(-\frac {3 \left (-x^{5}+4 x \,{\mathrm e}^{3}+4 \,{\mathrm e}^{\ln \relax (2)-1}\right )}{4 x^{2}}\) | \(24\) |
default | \(\frac {3 x^{3}}{4}-\frac {3 \,{\mathrm e}^{\ln \relax (2)-1}}{x^{2}}-\frac {3 \,{\mathrm e}^{3}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 19, normalized size = 0.68 \begin {gather*} \frac {3}{4} \, x^{3} - \frac {3 \, {\left (x e^{4} + 2\right )} e^{\left (-1\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.71 \begin {gather*} \frac {3\,x^3}{4}-\frac {{\mathrm {e}}^{-1}\,\left (3\,x\,{\mathrm {e}}^4+6\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 26, normalized size = 0.93 \begin {gather*} \frac {3 e x^{3} + \frac {- 12 x e^{4} - 24}{x^{2}}}{4 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________