Optimal. Leaf size=27 \[ e^{2+\frac {\left (4+\frac {1}{x^3}\right ) \left (5-\frac {1}{5 x}\right ) x}{2+e^x}} \]
________________________________________________________________________________________
Rubi [F] time = 14.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{10 x^3+5 e^x x^3}\right ) \left (6-100 x+200 x^4+e^x \left (3-49 x-25 x^2+104 x^4-100 x^5\right )\right )}{20 x^4+20 e^x x^4+5 e^{2 x} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (6-100 x+200 x^4+e^x \left (3-49 x-25 x^2+104 x^4-100 x^5\right )\right )}{5 \left (2+e^x\right )^2 x^4} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (6-100 x+200 x^4+e^x \left (3-49 x-25 x^2+104 x^4-100 x^5\right )\right )}{\left (2+e^x\right )^2 x^4} \, dx\\ &=\frac {1}{5} \int \left (\frac {2 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (-1+25 x-4 x^3+100 x^4\right )}{\left (2+e^x\right )^2 x^3}-\frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (-3+49 x+25 x^2-104 x^4+100 x^5\right )}{\left (2+e^x\right ) x^4}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (-3+49 x+25 x^2-104 x^4+100 x^5\right )}{\left (2+e^x\right ) x^4} \, dx\right )+\frac {2}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) \left (-1+25 x-4 x^3+100 x^4\right )}{\left (2+e^x\right )^2 x^3} \, dx\\ &=-\left (\frac {1}{5} \int \left (-\frac {104 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{2+e^x}-\frac {3 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^4}+\frac {49 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^3}+\frac {25 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^2}+\frac {100 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) x}{2+e^x}\right ) \, dx\right )+\frac {2}{5} \int \left (-\frac {4 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2}-\frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2 x^3}+\frac {25 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2 x^2}+\frac {100 \exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) x}{\left (2+e^x\right )^2}\right ) \, dx\\ &=-\left (\frac {2}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2 x^3} \, dx\right )+\frac {3}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^4} \, dx-\frac {8}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2} \, dx-5 \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^2} \, dx-\frac {49}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right ) x^3} \, dx+10 \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{\left (2+e^x\right )^2 x^2} \, dx-20 \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) x}{2+e^x} \, dx+\frac {104}{5} \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right )}{2+e^x} \, dx+40 \int \frac {\exp \left (\frac {-1+25 x+16 x^3+10 e^x x^3+100 x^4}{5 \left (2+e^x\right ) x^3}\right ) x}{\left (2+e^x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 33, normalized size = 1.22 \begin {gather*} e^{2+\frac {-1+25 x-4 x^3+100 x^4}{5 \left (2+e^x\right ) x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 39, normalized size = 1.44 \begin {gather*} e^{\left (\frac {100 \, x^{4} + 10 \, x^{3} e^{x} + 16 \, x^{3} + 25 \, x - 1}{5 \, {\left (x^{3} e^{x} + 2 \, x^{3}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 35, normalized size = 1.30
method | result | size |
risch | \({\mathrm e}^{\frac {10 \,{\mathrm e}^{x} x^{3}+100 x^{4}+16 x^{3}+25 x -1}{5 x^{3} \left ({\mathrm e}^{x}+2\right )}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 61, normalized size = 2.26 \begin {gather*} e^{\left (\frac {20 \, x}{e^{x} + 2} + \frac {2 \, e^{x}}{e^{x} + 2} - \frac {1}{5 \, {\left (x^{3} e^{x} + 2 \, x^{3}\right )}} + \frac {5}{x^{2} e^{x} + 2 \, x^{2}} + \frac {16}{5 \, {\left (e^{x} + 2\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.99, size = 68, normalized size = 2.52 \begin {gather*} {\mathrm {e}}^{\frac {2\,{\mathrm {e}}^x}{{\mathrm {e}}^x+2}}\,{\mathrm {e}}^{\frac {16}{5\,{\mathrm {e}}^x+10}}\,{\mathrm {e}}^{\frac {5}{x^2\,{\mathrm {e}}^x+2\,x^2}}\,{\mathrm {e}}^{-\frac {1}{5\,x^3\,{\mathrm {e}}^x+10\,x^3}}\,{\mathrm {e}}^{\frac {20\,x}{{\mathrm {e}}^x+2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 37, normalized size = 1.37 \begin {gather*} e^{\frac {100 x^{4} + 10 x^{3} e^{x} + 16 x^{3} + 25 x - 1}{5 x^{3} e^{x} + 10 x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________