Optimal. Leaf size=25 \[ x \left (-5+\frac {25}{9} x^4 (16+x)^2 \log ^2(\log (2-x))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(90-45 x) \log (2-x)+\left (12800 x^5+1600 x^6+50 x^7\right ) \log (\log (2-x))+\left (-64000 x^4+22400 x^5+4450 x^6+175 x^7\right ) \log (2-x) \log ^2(\log (2-x))}{(-18+9 x) \log (2-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5}{9} \left (-9+\frac {10 x^5 (16+x)^2 \log (\log (2-x))}{(-2+x) \log (2-x)}+5 x^4 \left (1280+192 x+7 x^2\right ) \log ^2(\log (2-x))\right ) \, dx\\ &=\frac {5}{9} \int \left (-9+\frac {10 x^5 (16+x)^2 \log (\log (2-x))}{(-2+x) \log (2-x)}+5 x^4 \left (1280+192 x+7 x^2\right ) \log ^2(\log (2-x))\right ) \, dx\\ &=-5 x+\frac {25}{9} \int x^4 \left (1280+192 x+7 x^2\right ) \log ^2(\log (2-x)) \, dx+\frac {50}{9} \int \frac {x^5 (16+x)^2 \log (\log (2-x))}{(-2+x) \log (2-x)} \, dx\\ &=-5 x+\frac {25}{9} \int \left (1280 x^4 \log ^2(\log (2-x))+192 x^5 \log ^2(\log (2-x))+7 x^6 \log ^2(\log (2-x))\right ) \, dx+\frac {50}{9} \int \left (\frac {5184 \log (\log (2-x))}{\log (2-x)}+\frac {10368 \log (\log (2-x))}{(-2+x) \log (2-x)}+\frac {2592 x \log (\log (2-x))}{\log (2-x)}+\frac {1296 x^2 \log (\log (2-x))}{\log (2-x)}+\frac {648 x^3 \log (\log (2-x))}{\log (2-x)}+\frac {324 x^4 \log (\log (2-x))}{\log (2-x)}+\frac {34 x^5 \log (\log (2-x))}{\log (2-x)}+\frac {x^6 \log (\log (2-x))}{\log (2-x)}\right ) \, dx\\ &=-5 x+\frac {50}{9} \int \frac {x^6 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {175}{9} \int x^6 \log ^2(\log (2-x)) \, dx+\frac {1700}{9} \int \frac {x^5 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {1600}{3} \int x^5 \log ^2(\log (2-x)) \, dx+1800 \int \frac {x^4 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {32000}{9} \int x^4 \log ^2(\log (2-x)) \, dx+3600 \int \frac {x^3 \log (\log (2-x))}{\log (2-x)} \, dx+7200 \int \frac {x^2 \log (\log (2-x))}{\log (2-x)} \, dx+14400 \int \frac {x \log (\log (2-x))}{\log (2-x)} \, dx+28800 \int \frac {\log (\log (2-x))}{\log (2-x)} \, dx+57600 \int \frac {\log (\log (2-x))}{(-2+x) \log (2-x)} \, dx\\ &=-5 x+28800 \log ^2(\log (2-x))+\frac {50}{9} \int \frac {x^6 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {175}{9} \int x^6 \log ^2(\log (2-x)) \, dx+\frac {1700}{9} \int \frac {x^5 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {1600}{3} \int x^5 \log ^2(\log (2-x)) \, dx+1800 \int \frac {x^4 \log (\log (2-x))}{\log (2-x)} \, dx+\frac {32000}{9} \int x^4 \log ^2(\log (2-x)) \, dx+3600 \int \frac {x^3 \log (\log (2-x))}{\log (2-x)} \, dx+7200 \int \frac {x^2 \log (\log (2-x))}{\log (2-x)} \, dx+14400 \int \frac {x \log (\log (2-x))}{\log (2-x)} \, dx-28800 \operatorname {Subst}\left (\int \frac {\log (\log (x))}{\log (x)} \, dx,x,2-x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.34, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(90-45 x) \log (2-x)+\left (12800 x^5+1600 x^6+50 x^7\right ) \log (\log (2-x))+\left (-64000 x^4+22400 x^5+4450 x^6+175 x^7\right ) \log (2-x) \log ^2(\log (2-x))}{(-18+9 x) \log (2-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.48, size = 29, normalized size = 1.16 \begin {gather*} \frac {25}{9} \, {\left (x^{7} + 32 \, x^{6} + 256 \, x^{5}\right )} \log \left (\log \left (-x + 2\right )\right )^{2} - 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 29, normalized size = 1.16 \begin {gather*} \frac {25}{9} \, {\left (x^{7} + 32 \, x^{6} + 256 \, x^{5}\right )} \log \left (\log \left (-x + 2\right )\right )^{2} - 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 31, normalized size = 1.24
method | result | size |
risch | \(\left (\frac {25}{9} x^{7}+\frac {800}{9} x^{6}+\frac {6400}{9} x^{5}\right ) \ln \left (\ln \left (2-x \right )\right )^{2}-5 x\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 43, normalized size = 1.72 \begin {gather*} \frac {25}{9} \, {\left (x^{7} + 32 \, x^{6} + 256 \, x^{5}\right )} \log \left (\log \left (-x + 2\right )\right )^{2} - 5 \, x - 10 \, \log \left (x - 2\right ) + 10 \, \log \left (-x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.15, size = 30, normalized size = 1.20 \begin {gather*} {\ln \left (\ln \left (2-x\right )\right )}^2\,\left (\frac {25\,x^7}{9}+\frac {800\,x^6}{9}+\frac {6400\,x^5}{9}\right )-5\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 31, normalized size = 1.24 \begin {gather*} - 5 x + \left (\frac {25 x^{7}}{9} + \frac {800 x^{6}}{9} + \frac {6400 x^{5}}{9}\right ) \log {\left (\log {\left (2 - x \right )} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________