Optimal. Leaf size=31 \[ x \left (e^{-2-6 x+x^2}-\log \left (\frac {3}{x}\right )\right )^2 \left (\frac {5}{x}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 e^{-2-6 x+x^2}+e^{-4-12 x+2 x^2} \left (-59 x+20 x^2\right )+\left (-10+e^{-2-6 x+x^2} \left (58 x-20 x^2\right )\right ) \log \left (\frac {3}{x}\right )+x \log ^2\left (\frac {3}{x}\right )+\left (2 e^{-2-6 x+x^2} x+e^{-4-12 x+2 x^2} \left (x-12 x^2+4 x^3\right )+\left (-2 x+e^{-2-6 x+x^2} \left (-2 x+12 x^2-4 x^3\right )\right ) \log \left (\frac {3}{x}\right )+x \log ^2\left (\frac {3}{x}\right )\right ) \log (x)}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-4-12 x+2 x^2} \left (-59+20 x+\log (x)-12 x \log (x)+4 x^2 \log (x)\right )+\frac {\log \left (\frac {3}{x}\right ) \left (-10+x \log \left (\frac {3}{x}\right )-2 x \log (x)+x \log \left (\frac {3}{x}\right ) \log (x)\right )}{x}-\frac {2 e^{-2-6 x+x^2} \left (-5-29 x \log \left (\frac {3}{x}\right )+10 x^2 \log \left (\frac {3}{x}\right )-x \log (x)+x \log \left (\frac {3}{x}\right ) \log (x)-6 x^2 \log \left (\frac {3}{x}\right ) \log (x)+2 x^3 \log \left (\frac {3}{x}\right ) \log (x)\right )}{x}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-2-6 x+x^2} \left (-5-29 x \log \left (\frac {3}{x}\right )+10 x^2 \log \left (\frac {3}{x}\right )-x \log (x)+x \log \left (\frac {3}{x}\right ) \log (x)-6 x^2 \log \left (\frac {3}{x}\right ) \log (x)+2 x^3 \log \left (\frac {3}{x}\right ) \log (x)\right )}{x} \, dx\right )+\int e^{-4-12 x+2 x^2} \left (-59+20 x+\log (x)-12 x \log (x)+4 x^2 \log (x)\right ) \, dx+\int \frac {\log \left (\frac {3}{x}\right ) \left (-10+x \log \left (\frac {3}{x}\right )-2 x \log (x)+x \log \left (\frac {3}{x}\right ) \log (x)\right )}{x} \, dx\\ &=-\left (2 \int \frac {e^{-2-6 x+x^2} \left (-5-x \log (x)+x \log \left (\frac {3}{x}\right ) \left (-29+10 x+\left (1-6 x+2 x^2\right ) \log (x)\right )\right )}{x} \, dx\right )+\int \left (-59 e^{-4-12 x+2 x^2}+20 e^{-4-12 x+2 x^2} x+e^{-4-12 x+2 x^2} \log (x)-12 e^{-4-12 x+2 x^2} x \log (x)+4 e^{-4-12 x+2 x^2} x^2 \log (x)\right ) \, dx+\int \left (\frac {\log \left (\frac {3}{x}\right ) \left (-10+x \log \left (\frac {3}{x}\right )\right )}{x}+\left (-2+\log \left (\frac {3}{x}\right )\right ) \log \left (\frac {3}{x}\right ) \log (x)\right ) \, dx\\ &=-\left (2 \int \left (\frac {e^{-2-6 x+x^2} \left (-5-29 x \log \left (\frac {3}{x}\right )+10 x^2 \log \left (\frac {3}{x}\right )\right )}{x}+e^{-2-6 x+x^2} \left (-1+\log \left (\frac {3}{x}\right )-6 x \log \left (\frac {3}{x}\right )+2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x)\right ) \, dx\right )+4 \int e^{-4-12 x+2 x^2} x^2 \log (x) \, dx-12 \int e^{-4-12 x+2 x^2} x \log (x) \, dx+20 \int e^{-4-12 x+2 x^2} x \, dx-59 \int e^{-4-12 x+2 x^2} \, dx+\int \frac {\log \left (\frac {3}{x}\right ) \left (-10+x \log \left (\frac {3}{x}\right )\right )}{x} \, dx+\int e^{-4-12 x+2 x^2} \log (x) \, dx+\int \left (-2+\log \left (\frac {3}{x}\right )\right ) \log \left (\frac {3}{x}\right ) \log (x) \, dx\\ &=5 e^{-4-12 x+2 x^2}+e^{-4-12 x+2 x^2} x \log (x)-2 \int \frac {e^{-2-6 x+x^2} \left (-5-29 x \log \left (\frac {3}{x}\right )+10 x^2 \log \left (\frac {3}{x}\right )\right )}{x} \, dx-2 \int e^{-2-6 x+x^2} \left (-1+\log \left (\frac {3}{x}\right )-6 x \log \left (\frac {3}{x}\right )+2 x^2 \log \left (\frac {3}{x}\right )\right ) \log (x) \, dx-4 \int \frac {e^{-22-12 x} \left (4 e^{2 \left (9+x^2\right )} (3+x)-35 e^{12 x} \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )\right )}{16 x} \, dx+12 \int \frac {e^{2 (-3+x)^2}-3 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{4 e^{22} x} \, dx+60 \int e^{-4-12 x+2 x^2} \, dx-\frac {59 \int e^{\frac {1}{8} (-12+4 x)^2} \, dx}{e^{22}}-\int -\frac {\sqrt {\frac {\pi }{2}} \text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{2 e^{22} x} \, dx+\int \left (-\frac {10 \log \left (\frac {3}{x}\right )}{x}+\log ^2\left (\frac {3}{x}\right )\right ) \, dx+\int \left (-2 \log \left (\frac {3}{x}\right ) \log (x)+\log ^2\left (\frac {3}{x}\right ) \log (x)\right ) \, dx\\ &=5 e^{-4-12 x+2 x^2}+\frac {59 \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} (3-x)\right )}{2 e^{22}}+e^{-4-12 x+2 x^2} x \log (x)-\frac {1}{4} \int \frac {e^{-22-12 x} \left (4 e^{2 \left (9+x^2\right )} (3+x)-35 e^{12 x} \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )\right )}{x} \, dx-2 \int \frac {e^{-2-6 x+x^2} \left (-5+x (-29+10 x) \log \left (\frac {3}{x}\right )\right )}{x} \, dx-2 \int \log \left (\frac {3}{x}\right ) \log (x) \, dx-2 \int e^{-2-6 x+x^2} \left (-1+\left (1-6 x+2 x^2\right ) \log \left (\frac {3}{x}\right )\right ) \log (x) \, dx-10 \int \frac {\log \left (\frac {3}{x}\right )}{x} \, dx+\frac {3 \int \frac {e^{2 (-3+x)^2}-3 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{x} \, dx}{e^{22}}+\frac {60 \int e^{\frac {1}{8} (-12+4 x)^2} \, dx}{e^{22}}+\frac {\sqrt {\frac {\pi }{2}} \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}+\int \log ^2\left (\frac {3}{x}\right ) \, dx+\int \log ^2\left (\frac {3}{x}\right ) \log (x) \, dx\\ &=5 e^{-4-12 x+2 x^2}+\frac {59 \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} (3-x)\right )}{2 e^{22}}-\frac {15 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{e^{22}}+5 \log ^2\left (\frac {3}{x}\right )+x \log ^2\left (\frac {3}{x}\right )+e^{-4-12 x+2 x^2} x \log (x)+x \log ^2\left (\frac {3}{x}\right ) \log (x)-\frac {1}{4} \int \left (\frac {4 e^{-4-12 x+2 x^2} (3+x)}{x}-\frac {35 \sqrt {2 \pi } \text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{e^{22} x}\right ) \, dx+2 \int \log \left (\frac {3}{x}\right ) \, dx+2 \int \left (1+\log \left (\frac {3}{x}\right )\right ) \, dx-2 \int \left (-\frac {5 e^{-2-6 x+x^2}}{x}+e^{-2-6 x+x^2} (-29+10 x) \log \left (\frac {3}{x}\right )\right ) \, dx-2 \int \left (-e^{-2-6 x+x^2} \log (x)+e^{-2-6 x+x^2} \log \left (\frac {3}{x}\right ) \log (x)-6 e^{-2-6 x+x^2} x \log \left (\frac {3}{x}\right ) \log (x)+2 e^{-2-6 x+x^2} x^2 \log \left (\frac {3}{x}\right ) \log (x)\right ) \, dx+\frac {3 \int \left (\frac {e^{2 (-3+x)^2}}{x}-\frac {3 \sqrt {2 \pi } \text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x}\right ) \, dx}{e^{22}}+\frac {\sqrt {\frac {\pi }{2}} \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}-\int \left (2+2 \log \left (\frac {3}{x}\right )+\log ^2\left (\frac {3}{x}\right )\right ) \, dx\\ &=5 e^{-4-12 x+2 x^2}+2 x+\frac {59 \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} (3-x)\right )}{2 e^{22}}-\frac {15 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{e^{22}}+2 x \log \left (\frac {3}{x}\right )+5 \log ^2\left (\frac {3}{x}\right )+x \log ^2\left (\frac {3}{x}\right )+e^{-4-12 x+2 x^2} x \log (x)+x \log ^2\left (\frac {3}{x}\right ) \log (x)-2 \int e^{-2-6 x+x^2} (-29+10 x) \log \left (\frac {3}{x}\right ) \, dx+2 \int e^{-2-6 x+x^2} \log (x) \, dx-2 \int e^{-2-6 x+x^2} \log \left (\frac {3}{x}\right ) \log (x) \, dx-4 \int e^{-2-6 x+x^2} x^2 \log \left (\frac {3}{x}\right ) \log (x) \, dx+10 \int \frac {e^{-2-6 x+x^2}}{x} \, dx+12 \int e^{-2-6 x+x^2} x \log \left (\frac {3}{x}\right ) \log (x) \, dx+\frac {3 \int \frac {e^{2 (-3+x)^2}}{x} \, dx}{e^{22}}+\frac {\sqrt {\frac {\pi }{2}} \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}+\frac {\left (35 \sqrt {\frac {\pi }{2}}\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}-\frac {\left (9 \sqrt {2 \pi }\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{e^{22}}-\int \frac {e^{-4-12 x+2 x^2} (3+x)}{x} \, dx-\int \log ^2\left (\frac {3}{x}\right ) \, dx\\ &=5 e^{-4-12 x+2 x^2}+2 x+\frac {59 \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} (3-x)\right )}{2 e^{22}}-\frac {15 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{e^{22}}-10 e^{-2-6 x+x^2} \log \left (\frac {3}{x}\right )+2 x \log \left (\frac {3}{x}\right )+\frac {\sqrt {\pi } \text {erfi}(3-x) \log \left (\frac {3}{x}\right )}{e^{11}}+5 \log ^2\left (\frac {3}{x}\right )+e^{-4-12 x+2 x^2} x \log (x)-\frac {\sqrt {\pi } \text {erfi}(3-x) \log (x)}{e^{11}}-2 e^{-2-6 x+x^2} x \log \left (\frac {3}{x}\right ) \log (x)+x \log ^2\left (\frac {3}{x}\right ) \log (x)-2 \int -\frac {\sqrt {\pi } \text {erfi}(3-x)}{2 e^{11} x} \, dx-2 \int \frac {5 e^{-2-6 x+x^2}-\frac {\sqrt {\pi } \text {erfi}(3-x)}{2 e^{11}}}{x} \, dx-2 \int \log \left (\frac {3}{x}\right ) \, dx+2 \int -\frac {\sqrt {\pi } \text {erfi}(3-x) \log \left (\frac {3}{x}\right )}{2 e^{11} x} \, dx+2 \int \frac {\sqrt {\pi } \text {erfi}(3-x) \log (x)}{2 e^{11} x} \, dx+4 \int \frac {e^{-11-6 x} \left (2 e^{9+x^2} (3+x)-17 e^{6 x} \sqrt {\pi } \text {erfi}(3-x)\right ) \log \left (\frac {3}{x}\right )}{4 x} \, dx+4 \int \frac {e^{-11-6 x} \left (-2 e^{9+x^2} (3+x)+17 e^{6 x} \sqrt {\pi } \text {erfi}(3-x)\right ) \log (x)}{4 x} \, dx+10 \int \frac {e^{-2-6 x+x^2}}{x} \, dx-12 \int \frac {\left (e^{(-3+x)^2}-3 \sqrt {\pi } \text {erfi}(3-x)\right ) \log \left (\frac {3}{x}\right )}{2 e^{11} x} \, dx-12 \int \frac {\left (-e^{(-3+x)^2}+3 \sqrt {\pi } \text {erfi}(3-x)\right ) \log (x)}{2 e^{11} x} \, dx+\frac {3 \int \frac {e^{2 (-3+x)^2}}{x} \, dx}{e^{22}}+\frac {\sqrt {\frac {\pi }{2}} \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}+\frac {\left (35 \sqrt {\frac {\pi }{2}}\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}-\frac {\left (9 \sqrt {2 \pi }\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{e^{22}}-\int \left (e^{-4-12 x+2 x^2}+\frac {3 e^{-4-12 x+2 x^2}}{x}\right ) \, dx\\ &=5 e^{-4-12 x+2 x^2}+\frac {59 \sqrt {\frac {\pi }{2}} \text {erfi}\left (\sqrt {2} (3-x)\right )}{2 e^{22}}-\frac {15 \sqrt {2 \pi } \text {erfi}\left (\sqrt {2} (3-x)\right )}{e^{22}}-10 e^{-2-6 x+x^2} \log \left (\frac {3}{x}\right )+\frac {\sqrt {\pi } \text {erfi}(3-x) \log \left (\frac {3}{x}\right )}{e^{11}}+5 \log ^2\left (\frac {3}{x}\right )+e^{-4-12 x+2 x^2} x \log (x)-\frac {\sqrt {\pi } \text {erfi}(3-x) \log (x)}{e^{11}}-2 e^{-2-6 x+x^2} x \log \left (\frac {3}{x}\right ) \log (x)+x \log ^2\left (\frac {3}{x}\right ) \log (x)-2 \int \left (\frac {5 e^{-2-6 x+x^2}}{x}-\frac {\sqrt {\pi } \text {erfi}(3-x)}{2 e^{11} x}\right ) \, dx-3 \int \frac {e^{-4-12 x+2 x^2}}{x} \, dx+10 \int \frac {e^{-2-6 x+x^2}}{x} \, dx+\frac {3 \int \frac {e^{2 (-3+x)^2}}{x} \, dx}{e^{22}}-\frac {6 \int \frac {\left (e^{(-3+x)^2}-3 \sqrt {\pi } \text {erfi}(3-x)\right ) \log \left (\frac {3}{x}\right )}{x} \, dx}{e^{11}}-\frac {6 \int \frac {\left (-e^{(-3+x)^2}+3 \sqrt {\pi } \text {erfi}(3-x)\right ) \log (x)}{x} \, dx}{e^{11}}+\frac {\sqrt {\frac {\pi }{2}} \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}+\frac {\left (35 \sqrt {\frac {\pi }{2}}\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{2 e^{22}}+\frac {\sqrt {\pi } \int \frac {\text {erfi}(3-x)}{x} \, dx}{e^{11}}-\frac {\sqrt {\pi } \int \frac {\text {erfi}(3-x) \log \left (\frac {3}{x}\right )}{x} \, dx}{e^{11}}+\frac {\sqrt {\pi } \int \frac {\text {erfi}(3-x) \log (x)}{x} \, dx}{e^{11}}-\frac {\left (9 \sqrt {2 \pi }\right ) \int \frac {\text {erfi}\left (3 \sqrt {2}-\sqrt {2} x\right )}{x} \, dx}{e^{22}}-\int e^{-4-12 x+2 x^2} \, dx+\int \frac {e^{-11-6 x} \left (2 e^{9+x^2} (3+x)-17 e^{6 x} \sqrt {\pi } \text {erfi}(3-x)\right ) \log \left (\frac {3}{x}\right )}{x} \, dx+\int \frac {e^{-11-6 x} \left (-2 e^{9+x^2} (3+x)+17 e^{6 x} \sqrt {\pi } \text {erfi}(3-x)\right ) \log (x)}{x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 37, normalized size = 1.19 \begin {gather*} e^{-4-12 x} \left (e^{x^2}-e^{2+6 x} \log \left (\frac {3}{x}\right )\right )^2 (5+x \log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 2.52, size = 96, normalized size = 3.10 \begin {gather*} -x \log \left (\frac {3}{x}\right )^{3} + {\left (2 \, x e^{\left (x^{2} - 6 \, x - 2\right )} + x \log \relax (3) + 5\right )} \log \left (\frac {3}{x}\right )^{2} + {\left (x \log \relax (3) + 5\right )} e^{\left (2 \, x^{2} - 12 \, x - 4\right )} - {\left (x e^{\left (2 \, x^{2} - 12 \, x - 4\right )} + 2 \, {\left (x \log \relax (3) + 5\right )} e^{\left (x^{2} - 6 \, x - 2\right )}\right )} \log \left (\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 135, normalized size = 4.35 \begin {gather*} {\left (x e^{6} \log \relax (3)^{2} \log \relax (x) - 2 \, x e^{6} \log \relax (3) \log \relax (x)^{2} + x e^{6} \log \relax (x)^{3} - 2 \, x e^{\left (x^{2} - 6 \, x + 4\right )} \log \relax (3) \log \relax (x) + 2 \, x e^{\left (x^{2} - 6 \, x + 4\right )} \log \relax (x)^{2} + x e^{\left (2 \, x^{2} - 12 \, x + 2\right )} \log \relax (x) - 10 \, e^{6} \log \relax (3) \log \relax (x) + 5 \, e^{6} \log \relax (x)^{2} - 10 \, e^{\left (x^{2} - 6 \, x + 4\right )} \log \relax (3) + 10 \, e^{\left (x^{2} - 6 \, x + 4\right )} \log \relax (x) + 5 \, e^{\left (2 \, x^{2} - 12 \, x + 2\right )}\right )} e^{\left (-6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.12, size = 112, normalized size = 3.61
method | result | size |
risch | \(x \ln \relax (x )^{3}+\left (5-2 x \ln \relax (3)+2 x \,{\mathrm e}^{x^{2}-6 x -2}\right ) \ln \relax (x )^{2}+\left (x \ln \relax (3)^{2}+{\mathrm e}^{2 x^{2}-12 x -4} x -2 \ln \relax (3) {\mathrm e}^{x^{2}-6 x -2} x +10 \,{\mathrm e}^{x^{2}-6 x -2}\right ) \ln \relax (x )-10 \ln \relax (3) \ln \relax (x )+5 \,{\mathrm e}^{2 x^{2}-12 x -4}-10 \ln \relax (3) {\mathrm e}^{x^{2}-6 x -2}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 155, normalized size = 5.00 \begin {gather*} x \log \left (\frac {3}{x}\right )^{2} + {\left ({\left (x \log \relax (x) + 5\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (x e^{2} \log \relax (x)^{2} - 5 \, e^{2} \log \relax (3) - {\left (x e^{2} \log \relax (3) - 5 \, e^{2}\right )} \log \relax (x)\right )} e^{\left (x^{2} + 6 \, x\right )} - {\left (x {\left (2 \, \log \relax (3) + 1\right )} e^{4} \log \relax (x)^{2} - x e^{4} \log \relax (x)^{3} - {\left (\log \relax (3)^{2} + 2 \, \log \relax (3) + 2\right )} x e^{4} \log \relax (x) + {\left (\log \relax (3)^{2} + 2 \, \log \relax (3) + 2\right )} x e^{4}\right )} e^{\left (12 \, x\right )}\right )} e^{\left (-12 \, x - 4\right )} + 2 \, x \log \left (\frac {3}{x}\right ) + 5 \, \log \left (\frac {3}{x}\right )^{2} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {10\,{\mathrm {e}}^{x^2-6\,x-2}-{\mathrm {e}}^{2\,x^2-12\,x-4}\,\left (59\,x-20\,x^2\right )+\ln \left (\frac {3}{x}\right )\,\left ({\mathrm {e}}^{x^2-6\,x-2}\,\left (58\,x-20\,x^2\right )-10\right )+x\,{\ln \left (\frac {3}{x}\right )}^2+\ln \relax (x)\,\left (x\,{\ln \left (\frac {3}{x}\right )}^2+\left (-2\,x-{\mathrm {e}}^{x^2-6\,x-2}\,\left (4\,x^3-12\,x^2+2\,x\right )\right )\,\ln \left (\frac {3}{x}\right )+2\,x\,{\mathrm {e}}^{x^2-6\,x-2}+{\mathrm {e}}^{2\,x^2-12\,x-4}\,\left (4\,x^3-12\,x^2+x\right )\right )}{x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.76, size = 95, normalized size = 3.06 \begin {gather*} x \log {\relax (x )}^{3} + x \log {\relax (3 )}^{2} \log {\relax (x )} + \left (- 2 x \log {\relax (3 )} + 5\right ) \log {\relax (x )}^{2} + \left (x \log {\relax (x )} + 5\right ) e^{2 x^{2} - 12 x - 4} + \left (2 x \log {\relax (x )}^{2} - 2 x \log {\relax (3 )} \log {\relax (x )} + 10 \log {\relax (x )} - 10 \log {\relax (3 )}\right ) e^{x^{2} - 6 x - 2} - 10 \log {\relax (3 )} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________