Optimal. Leaf size=26 \[ 5+\log ^2\left (e^{6+\left (3+x-\log \left (16 e^{-2 x}\right )\right )^2}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2+\exp \left (15+6 x+x^2+(-6-2 x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right ) \left (36+12 x-12 \log \left (16 e^{-2 x}\right )\right )\right ) \log \left (\exp \left (15+6 x+x^2+(-6-2 x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{\exp \left (15+6 x+x^2+(-6-2 x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (12 \left (3+x-\log \left (16 e^{-2 x}\right )\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )-\frac {2^{25+8 x} \left (e^{-2 x}\right )^{2 x} \left (-1+18 x+6 x^2-6 x \log \left (16 e^{-2 x}\right )\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+2^{24+8 x} \left (e^{-2 x}\right )^{2 x} x}\right ) \, dx\\ &=12 \int \left (3+x-\log \left (16 e^{-2 x}\right )\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right ) \, dx-\int \frac {2^{25+8 x} \left (e^{-2 x}\right )^{2 x} \left (-1+18 x+6 x^2-6 x \log \left (16 e^{-2 x}\right )\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+2^{24+8 x} \left (e^{-2 x}\right )^{2 x} x} \, dx\\ &=12 \int \left (3 \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )+x \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )-\log \left (16 e^{-2 x}\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )\right ) \, dx-\int \left (-\frac {2^{25+8 x} \left (e^{-2 x}\right )^{2 x} \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x}+\frac {9\ 2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x}+\frac {3\ 2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x^2 \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x}-\frac {3\ 2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x \log \left (16 e^{-2 x}\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x}\right ) \, dx\\ &=-\left (3 \int \frac {2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x^2 \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x} \, dx\right )+3 \int \frac {2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x \log \left (16 e^{-2 x}\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x} \, dx-9 \int \frac {2^{26+8 x} \left (e^{-2 x}\right )^{2 x} x \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x} \, dx+12 \int x \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right ) \, dx-12 \int \log \left (16 e^{-2 x}\right ) \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right ) \, dx+36 \int \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right ) \, dx+\int \frac {2^{25+8 x} \left (e^{-2 x}\right )^{2 x} \log \left (\exp \left (15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )\right )+x\right )}{e^{15+18 x+x^2+\log ^2\left (16 e^{-2 x}\right )}+256^{3+x} \left (e^{-2 x}\right )^{2 x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 38, normalized size = 1.46 \begin {gather*} \log ^2\left (e^{15+6 x+x^2-2 (3+x) \log \left (16 e^{-2 x}\right )+\log ^2\left (16 e^{-2 x}\right )}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.76, size = 29, normalized size = 1.12 \begin {gather*} \log \left (x + e^{\left (9 \, x^{2} - 24 \, {\left (x + 1\right )} \log \relax (2) + 16 \, \log \relax (2)^{2} + 18 \, x + 15\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (6 \, {\left (x - \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + 3\right )} e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )} + 1\right )} \log \left (x + e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )}\right )}{x + e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 37, normalized size = 1.42 \[\ln \left ({\mathrm e}^{\ln \left (16 \,{\mathrm e}^{-2 x}\right )^{2}+\left (-2 x -6\right ) \ln \left (16 \,{\mathrm e}^{-2 x}\right )+x^{2}+6 x +15}+x \right )^{2}\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {{\left (6 \, {\left (x - \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + 3\right )} e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )} + 1\right )} \log \left (x + e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )}\right )}{x + e^{\left (x^{2} - 2 \, {\left (x + 3\right )} \log \left (16 \, e^{\left (-2 \, x\right )}\right ) + \log \left (16 \, e^{\left (-2 \, x\right )}\right )^{2} + 6 \, x + 15\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.93, size = 118, normalized size = 4.54 \begin {gather*} 576\,{\ln \relax (2)}^2\,x^2-48\,\ln \relax (2)\,x\,\ln \left (16777216\,2^{24\,x}\,x+{\mathrm {e}}^{18\,x}\,{\mathrm {e}}^{15}\,{\mathrm {e}}^{16\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{9\,x^2}\right )+1152\,{\ln \relax (2)}^2\,x+{\ln \left (16777216\,2^{24\,x}\,x+{\mathrm {e}}^{18\,x}\,{\mathrm {e}}^{15}\,{\mathrm {e}}^{16\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{9\,x^2}\right )}^2-48\,\ln \relax (2)\,\ln \left (16777216\,2^{24\,x}\,x+{\mathrm {e}}^{18\,x}\,{\mathrm {e}}^{15}\,{\mathrm {e}}^{16\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{9\,x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________