Optimal. Leaf size=34 \[ \frac {-e+x-\frac {x}{x-5 \left (x+\frac {x}{1-e^{x^2}+x}\right )}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-9+e^{2 x^2} (-4+16 e)-8 x-4 x^2+e^{x^2} \left (13+e (-72-32 x)+8 x-10 x^2\right )+e \left (81+72 x+16 x^2\right )}{81 x^2+16 e^{2 x^2} x^2+72 x^3+16 x^4+e^{x^2} \left (-72 x^2-32 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-9+e^{2 x^2} (-4+16 e)-8 x-4 x^2+e^{x^2} \left (13+e (-72-32 x)+8 x-10 x^2\right )+e \left (81+72 x+16 x^2\right )}{x^2 \left (9-4 e^{x^2}+4 x\right )^2} \, dx\\ &=\int \left (\frac {-1+4 e}{4 x^2}-\frac {5 \left (1+2 x^2\right )}{4 \left (-9+4 e^{x^2}-4 x\right ) x^2}-\frac {5 \left (-2+9 x+4 x^2\right )}{2 x \left (9-4 e^{x^2}+4 x\right )^2}\right ) \, dx\\ &=\frac {1-4 e}{4 x}-\frac {5}{4} \int \frac {1+2 x^2}{\left (-9+4 e^{x^2}-4 x\right ) x^2} \, dx-\frac {5}{2} \int \frac {-2+9 x+4 x^2}{x \left (9-4 e^{x^2}+4 x\right )^2} \, dx\\ &=\frac {1-4 e}{4 x}-\frac {5}{4} \int \left (\frac {2}{-9+4 e^{x^2}-4 x}+\frac {1}{\left (-9+4 e^{x^2}-4 x\right ) x^2}\right ) \, dx-\frac {5}{2} \int \left (\frac {9}{\left (-9+4 e^{x^2}-4 x\right )^2}+\frac {4 x}{\left (-9+4 e^{x^2}-4 x\right )^2}-\frac {2}{x \left (9-4 e^{x^2}+4 x\right )^2}\right ) \, dx\\ &=\frac {1-4 e}{4 x}-\frac {5}{4} \int \frac {1}{\left (-9+4 e^{x^2}-4 x\right ) x^2} \, dx-\frac {5}{2} \int \frac {1}{-9+4 e^{x^2}-4 x} \, dx+5 \int \frac {1}{x \left (9-4 e^{x^2}+4 x\right )^2} \, dx-10 \int \frac {x}{\left (-9+4 e^{x^2}-4 x\right )^2} \, dx-\frac {45}{2} \int \frac {1}{\left (-9+4 e^{x^2}-4 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 0.82 \begin {gather*} \frac {1-4 e+\frac {5}{-9+4 e^{x^2}-4 x}}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 45, normalized size = 1.32 \begin {gather*} -\frac {{\left (4 \, x + 9\right )} e - {\left (4 \, e - 1\right )} e^{\left (x^{2}\right )} - x - 1}{4 \, x^{2} - 4 \, x e^{\left (x^{2}\right )} + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 46, normalized size = 1.35 \begin {gather*} -\frac {4 \, x e - x + 9 \, e - 4 \, e^{\left (x^{2} + 1\right )} + e^{\left (x^{2}\right )} - 1}{4 \, x^{2} - 4 \, x e^{\left (x^{2}\right )} + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 32, normalized size = 0.94
method | result | size |
risch | \(-\frac {{\mathrm e}}{x}+\frac {1}{4 x}-\frac {5}{4 x \left (4 x -4 \,{\mathrm e}^{x^{2}}+9\right )}\) | \(32\) |
norman | \(\frac {\left (4 \,{\mathrm e}-1\right ) {\mathrm e}^{x^{2}}+\left (-4 \,{\mathrm e}+1\right ) x +1-9 \,{\mathrm e}}{x \left (4 x -4 \,{\mathrm e}^{x^{2}}+9\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 46, normalized size = 1.35 \begin {gather*} -\frac {x {\left (4 \, e - 1\right )} - {\left (4 \, e - 1\right )} e^{\left (x^{2}\right )} + 9 \, e - 1}{4 \, x^{2} - 4 \, x e^{\left (x^{2}\right )} + 9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.00, size = 59, normalized size = 1.74 \begin {gather*} \frac {x^2\,\left (\frac {16\,\mathrm {e}}{9}-\frac {4}{9}\right )-9\,\mathrm {e}+{\mathrm {e}}^{x^2}\,\left (4\,\mathrm {e}-1\right )-x\,{\mathrm {e}}^{x^2}\,\left (\frac {16\,\mathrm {e}}{9}-\frac {4}{9}\right )+1}{9\,x-4\,x\,{\mathrm {e}}^{x^2}+4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.76 \begin {gather*} \frac {5}{- 16 x^{2} + 16 x e^{x^{2}} - 36 x} - \frac {- \frac {1}{4} + e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________