Optimal. Leaf size=20 \[ 5+\log \left (\frac {9}{4}\right )+\frac {x^2}{2 x+\log (-2+x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x^2+2 x^3+\left (-4 x+2 x^2\right ) \log (-2+x)}{-8 x^2+4 x^3+\left (-8 x+4 x^2\right ) \log (-2+x)+(-2+x) \log ^2(-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x (-x (-5+2 x)-2 (-2+x) \log (-2+x))}{(2-x) (2 x+\log (-2+x))^2} \, dx\\ &=\int \left (-\frac {x^2 (-3+2 x)}{(-2+x) (2 x+\log (-2+x))^2}+\frac {2 x}{2 x+\log (-2+x)}\right ) \, dx\\ &=2 \int \frac {x}{2 x+\log (-2+x)} \, dx-\int \frac {x^2 (-3+2 x)}{(-2+x) (2 x+\log (-2+x))^2} \, dx\\ &=2 \int \frac {x}{2 x+\log (-2+x)} \, dx-\int \left (\frac {2}{(2 x+\log (-2+x))^2}+\frac {4}{(-2+x) (2 x+\log (-2+x))^2}+\frac {x}{(2 x+\log (-2+x))^2}+\frac {2 x^2}{(2 x+\log (-2+x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{(2 x+\log (-2+x))^2} \, dx\right )-2 \int \frac {x^2}{(2 x+\log (-2+x))^2} \, dx+2 \int \frac {x}{2 x+\log (-2+x)} \, dx-4 \int \frac {1}{(-2+x) (2 x+\log (-2+x))^2} \, dx-\int \frac {x}{(2 x+\log (-2+x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^2}{2 x+\log (-2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.91, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{2 \, x + \log \left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{2 \, x + \log \left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.75
method | result | size |
norman | \(\frac {x^{2}}{2 x +\ln \left (x -2\right )}\) | \(15\) |
risch | \(\frac {x^{2}}{2 x +\ln \left (x -2\right )}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^{2}}{2 \, x + \log \left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.18, size = 14, normalized size = 0.70 \begin {gather*} \frac {x^2}{2\,x+\ln \left (x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 10, normalized size = 0.50 \begin {gather*} \frac {x^{2}}{2 x + \log {\left (x - 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________