Optimal. Leaf size=20 \[ -20+3 e^{\frac {1}{2} e^2 (8-x) x} x \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 36, normalized size of antiderivative = 1.80, number of steps used = 1, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2288} \begin {gather*} \frac {3 e^{\frac {1}{2} e^2 \left (8 x-x^2\right )} \left (4 x-x^2\right )}{4-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {3 e^{\frac {1}{2} e^2 \left (8 x-x^2\right )} \left (4 x-x^2\right )}{4-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.80 \begin {gather*} 3 e^{-\frac {1}{2} e^2 (-8+x) x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 15, normalized size = 0.75 \begin {gather*} 3 \, x e^{\left (-\frac {1}{2} \, {\left (x^{2} - 8 \, x\right )} e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 17, normalized size = 0.85 \begin {gather*} 3 \, x e^{\left (-\frac {1}{2} \, x^{2} e^{2} + 4 \, x e^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 13, normalized size = 0.65
method | result | size |
gosper | \(3 \,{\mathrm e}^{-\frac {x \left (-8+x \right ) {\mathrm e}^{2}}{2}} x\) | \(13\) |
risch | \(3 \,{\mathrm e}^{-\frac {x \left (-8+x \right ) {\mathrm e}^{2}}{2}} x\) | \(13\) |
norman | \(3 x \,{\mathrm e}^{\frac {\left (-x^{2}+8 x \right ) {\mathrm e}^{2}}{2}}\) | \(18\) |
default | \(\frac {3 \sqrt {\pi }\, {\mathrm e}^{8 \,{\mathrm e}^{2}} \sqrt {2}\, {\mathrm e}^{-1} \erf \left (\frac {\sqrt {2}\, {\mathrm e} x}{2}-2 \,{\mathrm e}^{2} \sqrt {2}\, {\mathrm e}^{-1}\right )}{2}+3 \,{\mathrm e}^{-2} x \,{\mathrm e}^{-\frac {x^{2} {\mathrm e}^{2}}{2}+4 \,{\mathrm e}^{2} x +2}-\frac {3 \,{\mathrm e}^{-2} \sqrt {\pi }\, {\mathrm e}^{2+8 \,{\mathrm e}^{2}} \sqrt {2}\, {\mathrm e}^{-1} \erf \left (\frac {\sqrt {2}\, {\mathrm e} x}{2}-2 \,{\mathrm e}^{2} \sqrt {2}\, {\mathrm e}^{-1}\right )}{2}\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 311, normalized size = 15.55 \begin {gather*} \frac {3}{2} \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{2} \, \sqrt {2} x e - 2 \, \sqrt {2} e\right ) e^{\left (8 \, e^{2} - 1\right )} + \frac {24 \, \sqrt {\frac {1}{2}} {\left (\frac {2 \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (x e^{2} - 4 \, e^{2}\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{2}} \sqrt {{\left (x e^{2} - 4 \, e^{2}\right )}^{2}} e^{\left (-1\right )}\right ) - 1\right )} e^{3}}{\sqrt {{\left (x e^{2} - 4 \, e^{2}\right )}^{2}} \left (-e^{2}\right )^{\frac {3}{2}}} - \frac {\sqrt {\frac {1}{2}} e^{\left (-\frac {1}{2} \, {\left (x e^{2} - 4 \, e^{2}\right )}^{2} e^{\left (-2\right )} + 2\right )}}{\left (-e^{2}\right )^{\frac {3}{2}}}\right )} e^{\left (8 \, e^{2} + 2\right )}}{\sqrt {-e^{2}}} - \frac {6 \, \sqrt {\frac {1}{2}} {\left (\frac {\sqrt {2} \sqrt {\frac {1}{2}} {\left (x e^{2} - 4 \, e^{2}\right )}^{3} e^{3} \Gamma \left (\frac {3}{2}, \frac {1}{2} \, {\left (x e^{2} - 4 \, e^{2}\right )}^{2} e^{\left (-2\right )}\right )}{{\left ({\left (x e^{2} - 4 \, e^{2}\right )}^{2}\right )}^{\frac {3}{2}} \left (-e^{2}\right )^{\frac {5}{2}}} - \frac {8 \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (x e^{2} - 4 \, e^{2}\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{2}} \sqrt {{\left (x e^{2} - 4 \, e^{2}\right )}^{2}} e^{\left (-1\right )}\right ) - 1\right )} e^{5}}{\sqrt {{\left (x e^{2} - 4 \, e^{2}\right )}^{2}} \left (-e^{2}\right )^{\frac {5}{2}}} + \frac {8 \, \sqrt {\frac {1}{2}} e^{\left (-\frac {1}{2} \, {\left (x e^{2} - 4 \, e^{2}\right )}^{2} e^{\left (-2\right )} + 4\right )}}{\left (-e^{2}\right )^{\frac {5}{2}}}\right )} e^{\left (8 \, e^{2} + 2\right )}}{\sqrt {-e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 17, normalized size = 0.85 \begin {gather*} 3\,x\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^2}{2}}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 15, normalized size = 0.75 \begin {gather*} 3 x e^{\left (- \frac {x^{2}}{2} + 4 x\right ) e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________