Optimal. Leaf size=25 \[ e^{-4-2 e \left (-8-\frac {4}{x}+\frac {e^x}{x}\right )}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 30, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {14, 6706} \begin {gather*} e^{-\frac {2 e^{x+1}}{x}+\frac {8 e}{x}-4 (1-4 e)}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+\frac {2 e^{-3 \left (1-\frac {16 e}{3}\right )+\frac {8 e}{x}-\frac {2 e^{1+x}}{x}} \left (-4+e^x-e^x x\right )}{x^2}\right ) \, dx\\ &=-x+2 \int \frac {e^{-3 \left (1-\frac {16 e}{3}\right )+\frac {8 e}{x}-\frac {2 e^{1+x}}{x}} \left (-4+e^x-e^x x\right )}{x^2} \, dx\\ &=e^{-4 (1-4 e)+\frac {8 e}{x}-\frac {2 e^{1+x}}{x}}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 27, normalized size = 1.08 \begin {gather*} e^{-4+16 e+\frac {8 e}{x}-\frac {2 e^{1+x}}{x}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.82, size = 29, normalized size = 1.16 \begin {gather*} -x + e^{\left (\frac {2 \, {\left (4 \, {\left (2 \, x + 1\right )} e - 2 \, x - e^{\left (x + 1\right )}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 1.08 \begin {gather*} -x + e^{\left (\frac {8 \, e}{x} - \frac {2 \, e^{\left (x + 1\right )}}{x} + 16 \, e - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.20
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {16 x \,{\mathrm e}+8 \,{\mathrm e}-2 \,{\mathrm e}^{x +1}-4 x}{x}}\) | \(30\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {-2 \,{\mathrm e} \,{\mathrm e}^{x}+\left (16 x +8\right ) {\mathrm e}-4 x}{x}}-x^{2}}{x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.08 \begin {gather*} -x + e^{\left (\frac {8 \, e}{x} - \frac {2 \, e^{\left (x + 1\right )}}{x} + 16 \, e - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.39, size = 30, normalized size = 1.20 \begin {gather*} {\mathrm {e}}^{\frac {8\,\mathrm {e}}{x}}\,{\mathrm {e}}^{16\,\mathrm {e}}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{-\frac {2\,\mathrm {e}\,{\mathrm {e}}^x}{x}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 24, normalized size = 0.96 \begin {gather*} - x + e^{\frac {- 4 x + e \left (16 x + 8\right ) - 2 e e^{x}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________