Optimal. Leaf size=24 \[ 2 e^{\frac {(5-x)^2 \left (1+5 x+\log \left (x^2\right )\right )}{e^4}} \]
________________________________________________________________________________________
Rubi [F] time = 4.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \left (100+190 x-192 x^2+30 x^3+\left (-20 x+4 x^2\right ) \log \left (x^2\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) (5-x) \left (10+21 x-15 x^2-2 x \log \left (x^2\right )\right )}{x} \, dx\\ &=2 \int \frac {\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) (5-x) \left (10+21 x-15 x^2-2 x \log \left (x^2\right )\right )}{x} \, dx\\ &=2 \int \left (\frac {\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \left (50+95 x-96 x^2+15 x^3\right )}{x}+2 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) (-5+x) \log \left (x^2\right )\right ) \, dx\\ &=2 \int \frac {\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \left (50+95 x-96 x^2+15 x^3\right )}{x} \, dx+4 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) (-5+x) \log \left (x^2\right ) \, dx\\ &=2 \int \left (95 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right )+\frac {50 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right )}{x}-96 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x+15 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x^2\right ) \, dx+4 \int \left (-5 \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \log \left (x^2\right )+\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x \log \left (x^2\right )\right ) \, dx\\ &=4 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x \log \left (x^2\right ) \, dx-20 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \log \left (x^2\right ) \, dx+30 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x^2 \, dx+100 \int \frac {\exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right )}{x} \, dx+190 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) \, dx-192 \int \exp \left (-4+\frac {25+115 x-49 x^2+5 x^3+\left (25-10 x+x^2\right ) \log \left (x^2\right )}{e^4}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.68, size = 31, normalized size = 1.29 \begin {gather*} 2 e^{\frac {(-5+x)^2 (1+5 x)}{e^4}} \left (x^2\right )^{\frac {(-5+x)^2}{e^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 40, normalized size = 1.67 \begin {gather*} 2 \, e^{\left ({\left (5 \, x^{3} - 49 \, x^{2} + {\left (x^{2} - 10 \, x + 25\right )} \log \left (x^{2}\right ) + 115 \, x - 4 \, e^{4} + 25\right )} e^{\left (-4\right )} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.99, size = 54, normalized size = 2.25 \begin {gather*} 2 \, e^{\left (5 \, x^{3} e^{\left (-4\right )} + x^{2} e^{\left (-4\right )} \log \left (x^{2}\right ) - 49 \, x^{2} e^{\left (-4\right )} - 10 \, x e^{\left (-4\right )} \log \left (x^{2}\right ) + 115 \, x e^{\left (-4\right )} + 25 \, e^{\left (-4\right )} \log \left (x^{2}\right ) + 25 \, e^{\left (-4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 21, normalized size = 0.88
method | result | size |
risch | \(2 \,{\mathrm e}^{\left (x -5\right )^{2} \left (1+\ln \left (x^{2}\right )+5 x \right ) {\mathrm e}^{-4}}\) | \(21\) |
default | \(2 \,{\mathrm e}^{\left (\left (x^{2}-10 x +25\right ) \ln \left (x^{2}\right )+5 x^{3}-49 x^{2}+115 x +25\right ) {\mathrm e}^{-4}}\) | \(37\) |
norman | \(2 \,{\mathrm e}^{\left (\left (x^{2}-10 x +25\right ) \ln \left (x^{2}\right )+5 x^{3}-49 x^{2}+115 x +25\right ) {\mathrm e}^{-4}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 49, normalized size = 2.04 \begin {gather*} 2 \, e^{\left (5 \, x^{3} e^{\left (-4\right )} + 2 \, x^{2} e^{\left (-4\right )} \log \relax (x) - 49 \, x^{2} e^{\left (-4\right )} - 20 \, x e^{\left (-4\right )} \log \relax (x) + 115 \, x e^{\left (-4\right )} + 50 \, e^{\left (-4\right )} \log \relax (x) + 25 \, e^{\left (-4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.74, size = 44, normalized size = 1.83 \begin {gather*} 2\,{\mathrm {e}}^{5\,x^3\,{\mathrm {e}}^{-4}}\,{\mathrm {e}}^{-49\,x^2\,{\mathrm {e}}^{-4}}\,{\mathrm {e}}^{25\,{\mathrm {e}}^{-4}}\,{\mathrm {e}}^{115\,x\,{\mathrm {e}}^{-4}}\,{\left (x^2\right )}^{{\mathrm {e}}^{-4}\,\left (x^2-10\,x+25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 34, normalized size = 1.42 \begin {gather*} 2 e^{\frac {5 x^{3} - 49 x^{2} + 115 x + \left (x^{2} - 10 x + 25\right ) \log {\left (x^{2} \right )} + 25}{e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________