Optimal. Leaf size=31 \[ \frac {e^{-x} \left (20+\frac {3 x}{e}\right )}{4+\frac {-2 x+(5+x)^2}{x}} \]
________________________________________________________________________________________
Rubi [C] time = 1.68, antiderivative size = 510, normalized size of antiderivative = 16.45, number of steps used = 27, number of rules used = 7, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.101, Rules used = {1585, 6741, 6742, 2194, 2177, 2178, 6728} \begin {gather*} -\frac {25 (9-10 e) e^{5+\sqrt {11}} \text {Ei}\left (-x-\sqrt {11}-6\right )}{11 \sqrt {11}}+\frac {25}{11} (9-10 e) e^{5+\sqrt {11}} \text {Ei}\left (-x-\sqrt {11}-6\right )-\frac {3}{22} \left (6+\sqrt {11}\right ) (47-40 e) e^{5+\sqrt {11}} \text {Ei}\left (-x-\sqrt {11}-6\right )+\frac {9 (47-40 e) e^{5+\sqrt {11}} \text {Ei}\left (-x-\sqrt {11}-6\right )}{11 \sqrt {11}}+\frac {1}{22} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) e^{5+\sqrt {11}} \text {Ei}\left (-x-\sqrt {11}-6\right )+\frac {25 (9-10 e) e^{5-\sqrt {11}} \text {Ei}\left (-x+\sqrt {11}-6\right )}{11 \sqrt {11}}+\frac {25}{11} (9-10 e) e^{5-\sqrt {11}} \text {Ei}\left (-x+\sqrt {11}-6\right )-\frac {3}{22} \left (6-\sqrt {11}\right ) (47-40 e) e^{5-\sqrt {11}} \text {Ei}\left (-x+\sqrt {11}-6\right )-\frac {9 (47-40 e) e^{5-\sqrt {11}} \text {Ei}\left (-x+\sqrt {11}-6\right )}{11 \sqrt {11}}-\frac {1}{22} \left (5 \sqrt {11} (21-20 e)-44 (9-5 e)\right ) e^{5-\sqrt {11}} \text {Ei}\left (-x+\sqrt {11}-6\right )+3 e^{-x-1}+\frac {25 (9-10 e) e^{-x-1}}{11 \left (x-\sqrt {11}+6\right )}-\frac {3 \left (6-\sqrt {11}\right ) (47-40 e) e^{-x-1}}{22 \left (x-\sqrt {11}+6\right )}+\frac {25 (9-10 e) e^{-x-1}}{11 \left (x+\sqrt {11}+6\right )}-\frac {3 \left (6+\sqrt {11}\right ) (47-40 e) e^{-x-1}}{22 \left (x+\sqrt {11}+6\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1585
Rule 2177
Rule 2178
Rule 2194
Rule 6728
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-x} \left (150 x-39 x^2-36 x^3-3 x^4+e \left (500-500 x-260 x^2-20 x^3\right )\right )}{\left (25+12 x+x^2\right )^2} \, dx\\ &=\int \frac {e^{-1-x} \left (500 e+50 (3-10 e) x-13 (3+20 e) x^2-4 (9+5 e) x^3-3 x^4\right )}{\left (25+12 x+x^2\right )^2} \, dx\\ &=\int \left (-3 e^{-1-x}+\frac {2 e^{-1-x} (-50 (9-10 e)-3 (47-40 e) x)}{\left (25+12 x+x^2\right )^2}+\frac {e^{-1-x} (111-20 e+4 (9-5 e) x)}{25+12 x+x^2}\right ) \, dx\\ &=2 \int \frac {e^{-1-x} (-50 (9-10 e)-3 (47-40 e) x)}{\left (25+12 x+x^2\right )^2} \, dx-3 \int e^{-1-x} \, dx+\int \frac {e^{-1-x} (111-20 e+4 (9-5 e) x)}{25+12 x+x^2} \, dx\\ &=3 e^{-1-x}+2 \int \left (\frac {50 e^{-1-x} (-9+10 e)}{\left (25+12 x+x^2\right )^2}+\frac {3 e^{-1-x} (-47+40 e) x}{\left (25+12 x+x^2\right )^2}\right ) \, dx+\int \left (\frac {e^{-1-x} \left (4 (9-5 e)+\frac {5 (-21+20 e)}{\sqrt {11}}\right )}{12-2 \sqrt {11}+2 x}+\frac {e^{-1-x} \left (4 (9-5 e)-\frac {5 (-21+20 e)}{\sqrt {11}}\right )}{12+2 \sqrt {11}+2 x}\right ) \, dx\\ &=3 e^{-1-x}+\frac {1}{11} \left (-5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) \int \frac {e^{-1-x}}{12-2 \sqrt {11}+2 x} \, dx+\frac {1}{11} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) \int \frac {e^{-1-x}}{12+2 \sqrt {11}+2 x} \, dx-(6 (47-40 e)) \int \frac {e^{-1-x} x}{\left (25+12 x+x^2\right )^2} \, dx-(100 (9-10 e)) \int \frac {e^{-1-x}}{\left (25+12 x+x^2\right )^2} \, dx\\ &=3 e^{-1-x}+\frac {1}{22} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )-\frac {1}{22} \left (5 \sqrt {11} (21-20 e)-44 (9-5 e)\right ) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )-(6 (47-40 e)) \int \left (\frac {\left (-12+2 \sqrt {11}\right ) e^{-1-x}}{22 \left (-12+2 \sqrt {11}-2 x\right )^2}-\frac {3 e^{-1-x}}{11 \sqrt {11} \left (-12+2 \sqrt {11}-2 x\right )}+\frac {\left (-12-2 \sqrt {11}\right ) e^{-1-x}}{22 \left (12+2 \sqrt {11}+2 x\right )^2}-\frac {3 e^{-1-x}}{11 \sqrt {11} \left (12+2 \sqrt {11}+2 x\right )}\right ) \, dx-(100 (9-10 e)) \int \left (\frac {e^{-1-x}}{11 \left (-12+2 \sqrt {11}-2 x\right )^2}+\frac {e^{-1-x}}{22 \sqrt {11} \left (-12+2 \sqrt {11}-2 x\right )}+\frac {e^{-1-x}}{11 \left (12+2 \sqrt {11}+2 x\right )^2}+\frac {e^{-1-x}}{22 \sqrt {11} \left (12+2 \sqrt {11}+2 x\right )}\right ) \, dx\\ &=3 e^{-1-x}+\frac {1}{22} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )-\frac {1}{22} \left (5 \sqrt {11} (21-20 e)-44 (9-5 e)\right ) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )+\frac {(18 (47-40 e)) \int \frac {e^{-1-x}}{-12+2 \sqrt {11}-2 x} \, dx}{11 \sqrt {11}}+\frac {(18 (47-40 e)) \int \frac {e^{-1-x}}{12+2 \sqrt {11}+2 x} \, dx}{11 \sqrt {11}}+\frac {1}{11} \left (6 \left (6-\sqrt {11}\right ) (47-40 e)\right ) \int \frac {e^{-1-x}}{\left (-12+2 \sqrt {11}-2 x\right )^2} \, dx+\frac {1}{11} \left (6 \left (6+\sqrt {11}\right ) (47-40 e)\right ) \int \frac {e^{-1-x}}{\left (12+2 \sqrt {11}+2 x\right )^2} \, dx-\frac {1}{11} (100 (9-10 e)) \int \frac {e^{-1-x}}{\left (-12+2 \sqrt {11}-2 x\right )^2} \, dx-\frac {1}{11} (100 (9-10 e)) \int \frac {e^{-1-x}}{\left (12+2 \sqrt {11}+2 x\right )^2} \, dx-\frac {(50 (9-10 e)) \int \frac {e^{-1-x}}{-12+2 \sqrt {11}-2 x} \, dx}{11 \sqrt {11}}-\frac {(50 (9-10 e)) \int \frac {e^{-1-x}}{12+2 \sqrt {11}+2 x} \, dx}{11 \sqrt {11}}\\ &=3 e^{-1-x}-\frac {3 \left (6-\sqrt {11}\right ) (47-40 e) e^{-1-x}}{22 \left (6-\sqrt {11}+x\right )}+\frac {25 (9-10 e) e^{-1-x}}{11 \left (6-\sqrt {11}+x\right )}-\frac {3 \left (6+\sqrt {11}\right ) (47-40 e) e^{-1-x}}{22 \left (6+\sqrt {11}+x\right )}+\frac {25 (9-10 e) e^{-1-x}}{11 \left (6+\sqrt {11}+x\right )}+\frac {1}{22} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )+\frac {9 (47-40 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )}{11 \sqrt {11}}-\frac {25 (9-10 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )}{11 \sqrt {11}}-\frac {1}{22} \left (5 \sqrt {11} (21-20 e)-44 (9-5 e)\right ) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )-\frac {9 (47-40 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )}{11 \sqrt {11}}+\frac {25 (9-10 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )}{11 \sqrt {11}}+\frac {1}{11} \left (3 \left (6-\sqrt {11}\right ) (47-40 e)\right ) \int \frac {e^{-1-x}}{-12+2 \sqrt {11}-2 x} \, dx-\frac {1}{11} \left (3 \left (6+\sqrt {11}\right ) (47-40 e)\right ) \int \frac {e^{-1-x}}{12+2 \sqrt {11}+2 x} \, dx-\frac {1}{11} (50 (9-10 e)) \int \frac {e^{-1-x}}{-12+2 \sqrt {11}-2 x} \, dx+\frac {1}{11} (50 (9-10 e)) \int \frac {e^{-1-x}}{12+2 \sqrt {11}+2 x} \, dx\\ &=3 e^{-1-x}-\frac {3 \left (6-\sqrt {11}\right ) (47-40 e) e^{-1-x}}{22 \left (6-\sqrt {11}+x\right )}+\frac {25 (9-10 e) e^{-1-x}}{11 \left (6-\sqrt {11}+x\right )}-\frac {3 \left (6+\sqrt {11}\right ) (47-40 e) e^{-1-x}}{22 \left (6+\sqrt {11}+x\right )}+\frac {25 (9-10 e) e^{-1-x}}{11 \left (6+\sqrt {11}+x\right )}+\frac {1}{22} \left (5 \sqrt {11} (21-20 e)+44 (9-5 e)\right ) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )+\frac {9 (47-40 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )}{11 \sqrt {11}}-\frac {3}{22} \left (6+\sqrt {11}\right ) (47-40 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )+\frac {25}{11} (9-10 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )-\frac {25 (9-10 e) e^{5+\sqrt {11}} \text {Ei}\left (-6-\sqrt {11}-x\right )}{11 \sqrt {11}}-\frac {1}{22} \left (5 \sqrt {11} (21-20 e)-44 (9-5 e)\right ) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )-\frac {9 (47-40 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )}{11 \sqrt {11}}-\frac {3}{22} \left (6-\sqrt {11}\right ) (47-40 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )+\frac {25}{11} (9-10 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )+\frac {25 (9-10 e) e^{5-\sqrt {11}} \text {Ei}\left (-6+\sqrt {11}-x\right )}{11 \sqrt {11}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 26, normalized size = 0.84 \begin {gather*} \frac {e^{-1-x} x (20 e+3 x)}{25+12 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 30, normalized size = 0.97 \begin {gather*} {\left (3 \, x + 20 \, e\right )} e^{\left (-x - \log \left (\frac {x^{2} + 12 \, x + 25}{x}\right ) - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.97, size = 38, normalized size = 1.23 \begin {gather*} \frac {3 \, x^{2} e^{\left (-x\right )} + 20 \, x e^{\left (-x + 1\right )}}{x^{2} e + 12 \, x e + 25 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 27, normalized size = 0.87
method | result | size |
risch | \(\frac {x \left (20 \,{\mathrm e}+3 x \right ) {\mathrm e}^{-x -1}}{x^{2}+12 x +25}\) | \(27\) |
norman | \(\frac {\left (3 \,{\mathrm e}^{-1} x +20\right ) x \,{\mathrm e}^{-x}}{x^{2}+12 x +25}\) | \(29\) |
gosper | \(\frac {\left (20 \,{\mathrm e}+3 x \right ) x \,{\mathrm e}^{-x} {\mathrm e}^{-1}}{x^{2}+12 x +25}\) | \(32\) |
default | \({\mathrm e}^{-1} \left (-\frac {75 \,{\mathrm e}^{-x} \left (-6 x -25\right )}{11 \left (x^{2}+12 x +25\right )}-\frac {39 \,{\mathrm e}^{-x} \left (-47 x -150\right )}{22 \left (x^{2}+12 x +25\right )}+\frac {18 \,{\mathrm e}^{-x} \left (-414 x -1175\right )}{11 \left (x^{2}+12 x +25\right )}+3 \,{\mathrm e}^{-x}-\frac {3 \,{\mathrm e}^{-x} \left (-3793 x -10350\right )}{22 \left (x^{2}+12 x +25\right )}+500 \,{\mathrm e} \left (\frac {{\mathrm e}^{-x} \left (-x -6\right )}{22 x^{2}+264 x +550}+\frac {{\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{44}-\frac {\sqrt {11}\, {\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{484}+\frac {{\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{44}+\frac {\sqrt {11}\, {\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{484}\right )+500 \,{\mathrm e} \left (\frac {{\mathrm e}^{-x} \left (-6 x -25\right )}{22 x^{2}+264 x +550}+\frac {3 \,{\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{22}+\frac {5 \sqrt {11}\, {\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{484}+\frac {3 \,{\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{22}-\frac {5 \sqrt {11}\, {\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{484}\right )-260 \,{\mathrm e} \left (\frac {{\mathrm e}^{-x} \left (-47 x -150\right )}{22 x^{2}+264 x +550}+\frac {47 \,{\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{44}+\frac {107 \sqrt {11}\, {\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{484}+\frac {47 \,{\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{44}-\frac {107 \sqrt {11}\, {\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{484}\right )+20 \,{\mathrm e} \left (\frac {{\mathrm e}^{-x} \left (-414 x -1175\right )}{22 x^{2}+264 x +550}+\frac {109 \,{\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{11}+\frac {1291 \sqrt {11}\, {\mathrm e}^{6+\sqrt {11}} \expIntegralEi \left (1, x +6+\sqrt {11}\right )}{484}+\frac {109 \,{\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{11}-\frac {1291 \sqrt {11}\, {\mathrm e}^{6-\sqrt {11}} \expIntegralEi \left (1, x +6-\sqrt {11}\right )}{484}\right )\right )\) | \(513\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 34, normalized size = 1.10 \begin {gather*} \frac {{\left (3 \, x^{2} + 20 \, x e\right )} e^{\left (-x\right )}}{x^{2} e + 12 \, x e + 25 \, e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.61, size = 26, normalized size = 0.84 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-1}\,\left (3\,x+20\,\mathrm {e}\right )}{x^2+12\,x+25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 32, normalized size = 1.03 \begin {gather*} \frac {\left (3 x^{2} + 20 e x\right ) e^{- x}}{e x^{2} + 12 e x + 25 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________