Optimal. Leaf size=26 \[ \frac {4}{9 \left (-3+\frac {5 e^{\left (1-e^x\right )^2}}{2 x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.22, antiderivative size = 27, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {6688, 12, 6711, 32} \begin {gather*} -\frac {8}{9 \left (6-\frac {5 e^{-2 e^x+e^{2 x}+1}}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40 e^{\left (1+e^x\right )^2} \left (1+2 e^x x-2 e^{2 x} x\right )}{9 \left (5 e^{1+e^{2 x}}-6 e^{2 e^x} x\right )^2} \, dx\\ &=\frac {40}{9} \int \frac {e^{\left (1+e^x\right )^2} \left (1+2 e^x x-2 e^{2 x} x\right )}{\left (5 e^{1+e^{2 x}}-6 e^{2 e^x} x\right )^2} \, dx\\ &=\frac {20}{27} \operatorname {Subst}\left (\int \frac {1}{(1+5 x)^2} \, dx,x,-\frac {e^{1-2 e^x+e^{2 x}}}{6 x}\right )\\ &=-\frac {8}{9 \left (6-\frac {5 e^{1-2 e^x+e^{2 x}}}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.65, size = 37, normalized size = 1.42 \begin {gather*} \frac {40 e^{1+e^{2 x}}}{9 \left (30 e^{1+e^{2 x}}-36 e^{2 e^x} x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 22, normalized size = 0.85 \begin {gather*} -\frac {8 \, x}{9 \, {\left (6 \, x - 5 \, e^{\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {40 \, {\left (2 \, x e^{\left (2 \, x\right )} - 2 \, x e^{x} - 1\right )} e^{\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}}{9 \, {\left (36 \, x^{2} - 60 \, x e^{\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )} + 25 \, e^{\left (2 \, e^{\left (2 \, x\right )} - 4 \, e^{x} + 2\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 0.88
method | result | size |
norman | \(-\frac {8 x}{9 \left (6 x -5 \,{\mathrm e}^{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x}+1}\right )}\) | \(23\) |
risch | \(-\frac {8 x}{9 \left (6 x -5 \,{\mathrm e}^{{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x}+1}\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 28, normalized size = 1.08 \begin {gather*} -\frac {8 \, x e^{\left (2 \, e^{x}\right )}}{9 \, {\left (6 \, x e^{\left (2 \, e^{x}\right )} - 5 \, e^{\left (e^{\left (2 \, x\right )} + 1\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.45, size = 23, normalized size = 0.88 \begin {gather*} -\frac {8\,x}{9\,\left (6\,x-5\,\mathrm {e}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.77 \begin {gather*} \frac {8 x}{- 54 x + 45 e^{e^{2 x} - 2 e^{x} + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________