Optimal. Leaf size=31 \[ e^{2+3 x+x^2-\left (-5-x+\frac {x^2}{256 (5+x)^2}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-942080000-1040384000 x-455411200 x^2-98920960 x^3-10674689 x^4-458240 x^5}{40960000+32768000 x+9830400 x^2+1310720 x^3+65536 x^4}\right ) \left (-358400000-358240000 x-143248000 x^2-28643205 x^3-2864000 x^4-114560 x^5\right )}{51200000+51200000 x+20480000 x^2+4096000 x^3+409600 x^4+16384 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right ) \left (-71680000-71648000 x-28649600 x^2-5728641 x^3-572800 x^4-22912 x^5\right )}{16384 (5+x)^5} \, dx\\ &=\frac {5 \int \frac {\exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right ) \left (-71680000-71648000 x-28649600 x^2-5728641 x^3-572800 x^4-22912 x^5\right )}{(5+x)^5} \, dx}{16384}\\ &=\frac {5 \int \left (-22912 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )+\frac {125 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^5}-\frac {75 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^4}+\frac {15 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^3}-\frac {641 \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^2}\right ) \, dx}{16384}\\ &=\frac {75 \int \frac {\exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^3} \, dx}{16384}-\frac {375 \int \frac {\exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^4} \, dx}{16384}+\frac {625 \int \frac {\exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^5} \, dx}{16384}-\frac {3205 \int \frac {\exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right )}{(5+x)^2} \, dx}{16384}-\frac {895}{128} \int \exp \left (-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.41, size = 36, normalized size = 1.16 \begin {gather*} e^{-\frac {942080000+1040384000 x+455411200 x^2+98920960 x^3+10674689 x^4+458240 x^5}{65536 (5+x)^4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 48, normalized size = 1.55 \begin {gather*} e^{\left (-\frac {458240 \, x^{5} + 10674689 \, x^{4} + 98920960 \, x^{3} + 455411200 \, x^{2} + 1040384000 \, x + 942080000}{65536 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 147, normalized size = 4.74 \begin {gather*} e^{\left (-\frac {895 \, x^{5}}{128 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}} - \frac {10674689 \, x^{4}}{65536 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}} - \frac {193205 \, x^{3}}{128 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}} - \frac {889475 \, x^{2}}{128 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}} - \frac {15875 \, x}{x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625} - \frac {14375}{x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F(-1)] time = 180.00, size = 0, normalized size = 0.00 hanged
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 3.30, size = 64, normalized size = 2.06 \begin {gather*} e^{\left (-\frac {895}{128} \, x - \frac {625}{65536 \, {\left (x^{4} + 20 \, x^{3} + 150 \, x^{2} + 500 \, x + 625\right )}} + \frac {125}{16384 \, {\left (x^{3} + 15 \, x^{2} + 75 \, x + 125\right )}} - \frac {75}{32768 \, {\left (x^{2} + 10 \, x + 25\right )}} + \frac {3205}{16384 \, {\left (x + 5\right )}} - \frac {1509889}{65536}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.42, size = 160, normalized size = 5.16 \begin {gather*} {\mathrm {e}}^{-\frac {15875\,x}{x^4+20\,x^3+150\,x^2+500\,x+625}}\,{\mathrm {e}}^{-\frac {14375}{x^4+20\,x^3+150\,x^2+500\,x+625}}\,{\mathrm {e}}^{-\frac {895\,x^5}{128\,x^4+2560\,x^3+19200\,x^2+64000\,x+80000}}\,{\mathrm {e}}^{-\frac {193205\,x^3}{128\,x^4+2560\,x^3+19200\,x^2+64000\,x+80000}}\,{\mathrm {e}}^{-\frac {889475\,x^2}{128\,x^4+2560\,x^3+19200\,x^2+64000\,x+80000}}\,{\mathrm {e}}^{-\frac {10674689\,x^4}{65536\,x^4+1310720\,x^3+9830400\,x^2+32768000\,x+40960000}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 48, normalized size = 1.55 \begin {gather*} e^{\frac {- 458240 x^{5} - 10674689 x^{4} - 98920960 x^{3} - 455411200 x^{2} - 1040384000 x - 942080000}{65536 x^{4} + 1310720 x^{3} + 9830400 x^{2} + 32768000 x + 40960000}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________