Optimal. Leaf size=26 \[ \frac {5}{2 x \left (\frac {21}{5}-3 x+\frac {3}{\log \left (\frac {x}{e}\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125-125 \log \left (\frac {x}{e}\right )+(-175+250 x) \log ^2\left (\frac {x}{e}\right )}{150 x^2+\left (420 x^2-300 x^3\right ) \log \left (\frac {x}{e}\right )+\left (294 x^2-420 x^3+150 x^4\right ) \log ^2\left (\frac {x}{e}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 \left (3+10 x+(9-20 x) \log (x)+(-7+10 x) \log ^2(x)\right )}{6 x^2 (2-5 x+(-7+5 x) \log (x))^2} \, dx\\ &=\frac {25}{6} \int \frac {3+10 x+(9-20 x) \log (x)+(-7+10 x) \log ^2(x)}{x^2 (2-5 x+(-7+5 x) \log (x))^2} \, dx\\ &=\frac {25}{6} \int \left (\frac {-7+10 x}{x^2 (-7+5 x)^2}+\frac {5 \left (49-45 x+25 x^2\right )}{x^2 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))^2}+\frac {5 (-7+15 x)}{x^2 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))}\right ) \, dx\\ &=\frac {25}{6} \int \frac {-7+10 x}{x^2 (-7+5 x)^2} \, dx+\frac {125}{6} \int \frac {49-45 x+25 x^2}{x^2 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))^2} \, dx+\frac {125}{6} \int \frac {-7+15 x}{x^2 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))} \, dx\\ &=\frac {25}{6 (7-5 x) x}+\frac {125}{6} \int \left (\frac {1}{x^2 (2-5 x-7 \log (x)+5 x \log (x))^2}+\frac {25}{49 x (2-5 x-7 \log (x)+5 x \log (x))^2}+\frac {125}{7 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))^2}-\frac {125}{49 (-7+5 x) (2-5 x-7 \log (x)+5 x \log (x))^2}\right ) \, dx+\frac {125}{6} \int \left (-\frac {1}{7 x^2 (2-5 x-7 \log (x)+5 x \log (x))}+\frac {5}{49 x (2-5 x-7 \log (x)+5 x \log (x))}+\frac {50}{7 (-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))}-\frac {25}{49 (-7+5 x) (2-5 x-7 \log (x)+5 x \log (x))}\right ) \, dx\\ &=\frac {25}{6 (7-5 x) x}+\frac {625}{294} \int \frac {1}{x (2-5 x-7 \log (x)+5 x \log (x))} \, dx-\frac {125}{42} \int \frac {1}{x^2 (2-5 x-7 \log (x)+5 x \log (x))} \, dx+\frac {3125}{294} \int \frac {1}{x (2-5 x-7 \log (x)+5 x \log (x))^2} \, dx-\frac {3125}{294} \int \frac {1}{(-7+5 x) (2-5 x-7 \log (x)+5 x \log (x))} \, dx+\frac {125}{6} \int \frac {1}{x^2 (2-5 x-7 \log (x)+5 x \log (x))^2} \, dx-\frac {15625}{294} \int \frac {1}{(-7+5 x) (2-5 x-7 \log (x)+5 x \log (x))^2} \, dx+\frac {3125}{21} \int \frac {1}{(-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))} \, dx+\frac {15625}{42} \int \frac {1}{(-7+5 x)^2 (2-5 x-7 \log (x)+5 x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 28, normalized size = 1.08 \begin {gather*} \frac {25 (1-\log (x))}{6 x (2-5 x+(-7+5 x) \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 1.08 \begin {gather*} -\frac {25 \, \log \left (x e^{\left (-1\right )}\right )}{6 \, {\left ({\left (5 \, x^{2} - 7 \, x\right )} \log \left (x e^{\left (-1\right )}\right ) - 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.43, size = 52, normalized size = 2.00 \begin {gather*} -\frac {125}{6 \, {\left (25 \, x^{3} \log \relax (x) - 25 \, x^{3} - 70 \, x^{2} \log \relax (x) + 45 \, x^{2} + 49 \, x \log \relax (x) - 14 \, x\right )}} - \frac {125}{42 \, {\left (5 \, x - 7\right )}} + \frac {25}{42 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.38
method | result | size |
norman | \(-\frac {25 \ln \left ({\mathrm e}^{-1} x \right )}{6 x \left (5 \ln \left ({\mathrm e}^{-1} x \right ) x -7 \ln \left ({\mathrm e}^{-1} x \right )-5\right )}\) | \(36\) |
risch | \(-\frac {25}{6 x \left (5 x -7\right )}-\frac {125}{6 x \left (5 x -7\right ) \left (5 \ln \left ({\mathrm e}^{-1} x \right ) x -7 \ln \left ({\mathrm e}^{-1} x \right )-5\right )}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 30, normalized size = 1.15 \begin {gather*} \frac {25 \, {\left (\log \relax (x) - 1\right )}}{6 \, {\left (5 \, x^{2} - {\left (5 \, x^{2} - 7 \, x\right )} \log \relax (x) - 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\left (250\,x-175\right )\,{\ln \left (x\,{\mathrm {e}}^{-1}\right )}^2-125\,\ln \left (x\,{\mathrm {e}}^{-1}\right )+125}{{\ln \left (x\,{\mathrm {e}}^{-1}\right )}^2\,\left (150\,x^4-420\,x^3+294\,x^2\right )+\ln \left (x\,{\mathrm {e}}^{-1}\right )\,\left (420\,x^2-300\,x^3\right )+150\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 41, normalized size = 1.58 \begin {gather*} - \frac {125}{- 150 x^{2} + 210 x + \left (150 x^{3} - 420 x^{2} + 294 x\right ) \log {\left (\frac {x}{e} \right )}} - \frac {25}{30 x^{2} - 42 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________