Optimal. Leaf size=28 \[ e^4 \left (9+x \left (5-x^2-\log (x+\log (-4+x-\log (x)))\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.90, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^4 \left (-1+17 x-4 x^2-12 x^3+3 x^4\right )+e^4 \left (4 x-3 x^3\right ) \log (x)+\left (e^4 \left (20-5 x-12 x^2+3 x^3\right )+e^4 \left (5-3 x^2\right ) \log (x)\right ) \log (-4+x-\log (x))+\left (e^4 \left (-4 x+x^2\right )-e^4 x \log (x)+\left (e^4 (-4+x)-e^4 \log (x)\right ) \log (-4+x-\log (x))\right ) \log (x+\log (-4+x-\log (x)))}{4 x-x^2+x \log (x)+(4-x+\log (x)) \log (-4+x-\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (-1+17 x-4 x^2-12 x^3+3 x^4\right )+e^4 \left (4 x-3 x^3\right ) \log (x)+\left (e^4 \left (20-5 x-12 x^2+3 x^3\right )+e^4 \left (5-3 x^2\right ) \log (x)\right ) \log (-4+x-\log (x))+\left (e^4 \left (-4 x+x^2\right )-e^4 x \log (x)+\left (e^4 (-4+x)-e^4 \log (x)\right ) \log (-4+x-\log (x))\right ) \log (x+\log (-4+x-\log (x)))}{(4-x+\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=\int \frac {e^4 \left (-1+17 x-4 x^2-12 x^3+3 x^4+\left (4 x-3 x^3\right ) \log (x)+\left (-5+3 x^2\right ) (-4+x-\log (x)) \log (-4+x-\log (x))+(-4+x-\log (x)) (x+\log (-4+x-\log (x))) \log (x+\log (-4+x-\log (x)))\right )}{(4-x+\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=e^4 \int \frac {-1+17 x-4 x^2-12 x^3+3 x^4+\left (4 x-3 x^3\right ) \log (x)+\left (-5+3 x^2\right ) (-4+x-\log (x)) \log (-4+x-\log (x))+(-4+x-\log (x)) (x+\log (-4+x-\log (x))) \log (x+\log (-4+x-\log (x)))}{(4-x+\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=e^4 \int \left (\frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}-\frac {17 x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}+\frac {4 x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}+\frac {12 x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}-\frac {3 x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}+\frac {x \left (-4+3 x^2\right ) \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}-\frac {\left (-5+3 x^2\right ) \log (-4+x-\log (x))}{x+\log (-4+x-\log (x))}-\log (x+\log (-4+x-\log (x)))\right ) \, dx\\ &=e^4 \int \frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+e^4 \int \frac {x \left (-4+3 x^2\right ) \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-e^4 \int \frac {\left (-5+3 x^2\right ) \log (-4+x-\log (x))}{x+\log (-4+x-\log (x))} \, dx-e^4 \int \log (x+\log (-4+x-\log (x))) \, dx-\left (3 e^4\right ) \int \frac {x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (4 e^4\right ) \int \frac {x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (12 e^4\right ) \int \frac {x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (17 e^4\right ) \int \frac {x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=e^4 \int \frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-e^4 \int \left (-5+3 x^2+\frac {x \left (5-3 x^2\right )}{x+\log (-4+x-\log (x))}\right ) \, dx+e^4 \int \left (-\frac {4 x \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}+\frac {3 x^3 \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))}\right ) \, dx-e^4 \int \log (x+\log (-4+x-\log (x))) \, dx-\left (3 e^4\right ) \int \frac {x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (4 e^4\right ) \int \frac {x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (12 e^4\right ) \int \frac {x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (17 e^4\right ) \int \frac {x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=5 e^4 x-e^4 x^3-e^4 \int \frac {x \left (5-3 x^2\right )}{x+\log (-4+x-\log (x))} \, dx+e^4 \int \frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-e^4 \int \log (x+\log (-4+x-\log (x))) \, dx-\left (3 e^4\right ) \int \frac {x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (3 e^4\right ) \int \frac {x^3 \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (4 e^4\right ) \int \frac {x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (4 e^4\right ) \int \frac {x \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (12 e^4\right ) \int \frac {x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (17 e^4\right ) \int \frac {x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=5 e^4 x-e^4 x^3+e^4 \int \frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-e^4 \int \left (\frac {5 x}{x+\log (-4+x-\log (x))}-\frac {3 x^3}{x+\log (-4+x-\log (x))}\right ) \, dx-e^4 \int \log (x+\log (-4+x-\log (x))) \, dx-\left (3 e^4\right ) \int \frac {x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (3 e^4\right ) \int \frac {x^3 \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (4 e^4\right ) \int \frac {x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (4 e^4\right ) \int \frac {x \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (12 e^4\right ) \int \frac {x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (17 e^4\right ) \int \frac {x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ &=5 e^4 x-e^4 x^3+e^4 \int \frac {1}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-e^4 \int \log (x+\log (-4+x-\log (x))) \, dx+\left (3 e^4\right ) \int \frac {x^3}{x+\log (-4+x-\log (x))} \, dx-\left (3 e^4\right ) \int \frac {x^4}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (3 e^4\right ) \int \frac {x^3 \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx+\left (4 e^4\right ) \int \frac {x^2}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (4 e^4\right ) \int \frac {x \log (x)}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (5 e^4\right ) \int \frac {x}{x+\log (-4+x-\log (x))} \, dx+\left (12 e^4\right ) \int \frac {x^3}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx-\left (17 e^4\right ) \int \frac {x}{(-4+x-\log (x)) (x+\log (-4+x-\log (x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 0.96 \begin {gather*} e^4 \left (5 x-x^3-x \log (x+\log (-4+x-\log (x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 28, normalized size = 1.00 \begin {gather*} -x e^{4} \log \left (x + \log \left (x - \log \relax (x) - 4\right )\right ) - {\left (x^{3} - 5 \, x\right )} e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 29, normalized size = 1.04 \begin {gather*} -x^{3} e^{4} - x e^{4} \log \left (x + \log \left (x - \log \relax (x) - 4\right )\right ) + 5 \, x e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 1.00
method | result | size |
risch | \(-x \,{\mathrm e}^{4} \ln \left (\ln \left (-\ln \relax (x )+x -4\right )+x \right )-{\mathrm e}^{4} x \left (x^{2}-5\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 29, normalized size = 1.04 \begin {gather*} -x^{3} e^{4} - x e^{4} \log \left (x + \log \left (x - \log \relax (x) - 4\right )\right ) + 5 \, x e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 21, normalized size = 0.75 \begin {gather*} -x\,{\mathrm {e}}^4\,\left (\ln \left (x+\ln \left (x-\ln \relax (x)-4\right )\right )+x^2-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.64, size = 29, normalized size = 1.04 \begin {gather*} - x^{3} e^{4} - x e^{4} \log {\left (x + \log {\left (x - \log {\relax (x )} - 4 \right )} \right )} + 5 x e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________