Optimal. Leaf size=20 \[ \left (x+\left (-5+\log \left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 7.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-40 x-22 x^2+2 x^3+\left (8 x+6 x^2\right ) \log \left (x^3\right )+\left (200+134 x-4 x^2+\left (-80-52 x+2 x^2\right ) \log \left (x^3\right )+(8+6 x) \log ^2\left (x^3\right )\right ) \log \left (32 x+16 x^2+2 x^3\right )+\left (-120-30 x+(24+6 x) \log \left (x^3\right )\right ) \log ^2\left (32 x+16 x^2+2 x^3\right )}{4 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-40 x-22 x^2+2 x^3+\left (8 x+6 x^2\right ) \log \left (x^3\right )+\left (200+134 x-4 x^2+\left (-80-52 x+2 x^2\right ) \log \left (x^3\right )+(8+6 x) \log ^2\left (x^3\right )\right ) \log \left (32 x+16 x^2+2 x^3\right )+\left (-120-30 x+(24+6 x) \log \left (x^3\right )\right ) \log ^2\left (32 x+16 x^2+2 x^3\right )}{x (4+x)} \, dx\\ &=\int \left (\frac {2 \left (-20-11 x+x^2+4 \log \left (x^3\right )+3 x \log \left (x^3\right )\right )}{4+x}+\frac {2 \left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{x (4+x)}+\frac {6 \left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x}\right ) \, dx\\ &=2 \int \frac {-20-11 x+x^2+4 \log \left (x^3\right )+3 x \log \left (x^3\right )}{4+x} \, dx+2 \int \frac {\left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{x (4+x)} \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx\\ &=2 \int \left (\frac {-20-11 x+x^2}{4+x}+\frac {(4+3 x) \log \left (x^3\right )}{4+x}\right ) \, dx+2 \int \frac {\left (100+67 x-2 x^2+\left (-40-26 x+x^2\right ) \log \left (x^3\right )+(4+3 x) \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{x (4+x)} \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx\\ &=2 \int \frac {-20-11 x+x^2}{4+x} \, dx+2 \int \frac {(4+3 x) \log \left (x^3\right )}{4+x} \, dx+2 \int \left (\frac {\left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{4 x}-\frac {\left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{4 (4+x)}\right ) \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx\\ &=\frac {1}{2} \int \frac {\left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{x} \, dx-\frac {1}{2} \int \frac {\left (100+67 x-2 x^2-40 \log \left (x^3\right )-26 x \log \left (x^3\right )+x^2 \log \left (x^3\right )+4 \log ^2\left (x^3\right )+3 x \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+2 \int \left (-15+x+\frac {40}{4+x}\right ) \, dx+2 \int \left (3 \log \left (x^3\right )-\frac {8 \log \left (x^3\right )}{4+x}\right ) \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx\\ &=-30 x+x^2+80 \log (4+x)+\frac {1}{2} \int \frac {\left (100+67 x-2 x^2+\left (-40-26 x+x^2\right ) \log \left (x^3\right )+(4+3 x) \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{x} \, dx-\frac {1}{2} \int \frac {\left (100+67 x-2 x^2+\left (-40-26 x+x^2\right ) \log \left (x^3\right )+(4+3 x) \log ^2\left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+6 \int \log \left (x^3\right ) \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx-16 \int \frac {\log \left (x^3\right )}{4+x} \, dx\\ &=-48 x+x^2+6 x \log \left (x^3\right )-16 \log \left (1+\frac {x}{4}\right ) \log \left (x^3\right )+80 \log (4+x)+\frac {1}{2} \int \left (67 \log \left (2 x (4+x)^2\right )+\frac {100 \log \left (2 x (4+x)^2\right )}{x}-2 x \log \left (2 x (4+x)^2\right )-26 \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )-\frac {40 \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{x}+x \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )+3 \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )+\frac {4 \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{x}\right ) \, dx-\frac {1}{2} \int \left (\frac {100 \log \left (2 x (4+x)^2\right )}{4+x}+\frac {67 x \log \left (2 x (4+x)^2\right )}{4+x}-\frac {2 x^2 \log \left (2 x (4+x)^2\right )}{4+x}-\frac {40 \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x}-\frac {26 x \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x}+\frac {x^2 \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x}+\frac {4 \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x}+\frac {3 x \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x}\right ) \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx+48 \int \frac {\log \left (1+\frac {x}{4}\right )}{x} \, dx\\ &=-48 x+x^2+6 x \log \left (x^3\right )-16 \log \left (1+\frac {x}{4}\right ) \log \left (x^3\right )+80 \log (4+x)-48 \text {Li}_2\left (-\frac {x}{4}\right )+\frac {1}{2} \int x \log \left (x^3\right ) \log \left (2 x (4+x)^2\right ) \, dx-\frac {1}{2} \int \frac {x^2 \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+\frac {3}{2} \int \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right ) \, dx-\frac {3}{2} \int \frac {x \log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+2 \int \frac {\log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{x} \, dx-2 \int \frac {\log ^2\left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+6 \int \frac {\left (-5+\log \left (x^3\right )\right ) \log ^2\left (2 x (4+x)^2\right )}{x} \, dx-13 \int \log \left (x^3\right ) \log \left (2 x (4+x)^2\right ) \, dx+13 \int \frac {x \log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx-20 \int \frac {\log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{x} \, dx+20 \int \frac {\log \left (x^3\right ) \log \left (2 x (4+x)^2\right )}{4+x} \, dx+\frac {67}{2} \int \log \left (2 x (4+x)^2\right ) \, dx-\frac {67}{2} \int \frac {x \log \left (2 x (4+x)^2\right )}{4+x} \, dx+50 \int \frac {\log \left (2 x (4+x)^2\right )}{x} \, dx-50 \int \frac {\log \left (2 x (4+x)^2\right )}{4+x} \, dx-\int x \log \left (2 x (4+x)^2\right ) \, dx+\int \frac {x^2 \log \left (2 x (4+x)^2\right )}{4+x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 20, normalized size = 1.00 \begin {gather*} \left (x+\left (-5+\log \left (x^3\right )\right ) \log \left (2 x (4+x)^2\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.10, size = 63, normalized size = 3.15 \begin {gather*} {\left (\log \left (x^{3}\right )^{2} - 10 \, \log \left (x^{3}\right ) + 25\right )} \log \left (2 \, x^{3} + 16 \, x^{2} + 32 \, x\right )^{2} + x^{2} + 2 \, {\left (x \log \left (x^{3}\right ) - 5 \, x\right )} \log \left (2 \, x^{3} + 16 \, x^{2} + 32 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 109, normalized size = 5.45 \begin {gather*} 9 \, \log \relax (x)^{4} + 3 \, {\left (3 \, \log \relax (x)^{2} - 10 \, \log \relax (x)\right )} \log \left (2 \, x^{2} + 16 \, x + 32\right )^{2} + {\left (6 \, x + 25\right )} \log \relax (x)^{2} - 30 \, \log \relax (x)^{3} + x^{2} + 2 \, {\left (9 \, \log \relax (x)^{3} + 3 \, x \log \relax (x) - 30 \, \log \relax (x)^{2} - 5 \, x + 50 \, \log \left (x + 4\right ) + 25 \, \log \relax (x)\right )} \log \left (2 \, x^{2} + 16 \, x + 32\right ) - 100 \, \log \left (x + 4\right )^{2} - 10 \, x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F(-1)] time = 180.00, size = 0, normalized size = 0.00 hanged
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 146, normalized size = 7.30 \begin {gather*} 6 \, {\left (3 \, \log \relax (2) - 5\right )} \log \relax (x)^{3} + 9 \, \log \relax (x)^{4} + 4 \, {\left (9 \, \log \relax (x)^{2} - 30 \, \log \relax (x) + 25\right )} \log \left (x + 4\right )^{2} + {\left (9 \, \log \relax (2)^{2} + 6 \, x - 60 \, \log \relax (2) + 25\right )} \log \relax (x)^{2} + x^{2} - 10 \, x {\left (\log \relax (2) - 3\right )} + 4 \, {\left (3 \, {\left (3 \, \log \relax (2) - 10\right )} \log \relax (x)^{2} + 9 \, \log \relax (x)^{3} + {\left (3 \, x - 30 \, \log \relax (2) + 25\right )} \log \relax (x) - 5 \, x + 25 \, \log \relax (2) - 20\right )} \log \left (x + 4\right ) + 2 \, {\left (x {\left (3 \, \log \relax (2) - 5\right )} - 15 \, \log \relax (2)^{2} + 25 \, \log \relax (2)\right )} \log \relax (x) - 30 \, x + 80 \, \log \left (x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.74, size = 41, normalized size = 2.05 \begin {gather*} {\left (x-5\,\ln \left (2\,x^3+16\,x^2+32\,x\right )+\ln \left (2\,x^3+16\,x^2+32\,x\right )\,\ln \left (x^3\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 61, normalized size = 3.05 \begin {gather*} x^{2} + \left (2 x \log {\left (x^{3} \right )} - 10 x\right ) \log {\left (2 x^{3} + 16 x^{2} + 32 x \right )} + \left (\log {\left (x^{3} \right )}^{2} - 10 \log {\left (x^{3} \right )} + 25\right ) \log {\left (2 x^{3} + 16 x^{2} + 32 x \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________