Optimal. Leaf size=34 \[ x \log \left (\frac {5}{2} \left (2-\frac {1}{3} \log (\log (2))-e^3 (i \pi +\log (4-\log (3)))\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 32, normalized size of antiderivative = 0.94, number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {8} \begin {gather*} x \log \left (\frac {5}{6} \left (6-\log (\log (2))-3 e^3 (\log (4-\log (3))+i \pi )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x \log \left (\frac {5}{6} \left (6-\log (\log (2))-3 e^3 (i \pi +\log (4-\log (3)))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 32, normalized size = 0.94 \begin {gather*} x \log \left (\frac {1}{6} \left (30-5 \log (\log (2))-15 e^3 (i \pi +\log (4-\log (3)))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 19, normalized size = 0.56 \begin {gather*} x \log \left (-\frac {5}{2} \, e^{3} \log \left (\log \relax (3) - 4\right ) - \frac {5}{6} \, \log \left (\log \relax (2)\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 19, normalized size = 0.56 \begin {gather*} x \log \left (-\frac {5}{2} \, e^{3} \log \left (\log \relax (3) - 4\right ) - \frac {5}{6} \, \log \left (\log \relax (2)\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.59
method | result | size |
default | \(\ln \left (-\frac {5 \,{\mathrm e}^{3} \ln \left (-4+\ln \relax (3)\right )}{2}-\frac {5 \ln \left (\ln \relax (2)\right )}{6}+5\right ) x\) | \(20\) |
norman | \(\left (\ln \left (\frac {5}{6}\right )+\ln \left (-3 \,{\mathrm e}^{3} \ln \left (-4+\ln \relax (3)\right )-\ln \left (\ln \relax (2)\right )+6\right )\right ) x\) | \(23\) |
risch | \(x \ln \left (\frac {5}{6}\right )+x \ln \left (-3 \,{\mathrm e}^{3} \ln \left (-4+\ln \relax (3)\right )-\ln \left (\ln \relax (2)\right )+6\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 0.56 \begin {gather*} x \log \left (-\frac {5}{2} \, e^{3} \log \left (\log \relax (3) - 4\right ) - \frac {5}{6} \, \log \left (\log \relax (2)\right ) + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.00, size = 19, normalized size = 0.56 \begin {gather*} x\,\ln \left (5-\frac {5\,\ln \left (\ln \relax (3)-4\right )\,{\mathrm {e}}^3}{2}-\frac {5\,\ln \left (\ln \relax (2)\right )}{6}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 29, normalized size = 0.85 \begin {gather*} x \log {\left (- \frac {5 \log {\left (\log {\relax (2 )} \right )}}{6} + 5 - \frac {5 \left (\log {\left (4 - \log {\relax (3 )} \right )} + i \pi \right ) e^{3}}{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________