Optimal. Leaf size=27 \[ 4 \left (5-e^{10-x}+\frac {x^2}{5 e^3 \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.20, antiderivative size = 84, normalized size of antiderivative = 3.11, number of steps used = 10, number of rules used = 8, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {12, 6742, 2194, 2306, 2309, 2178, 2366, 6482} \begin {gather*} \frac {8 \text {Ei}(2 \log (x))}{5 e^3}-\frac {8 (1-2 \log (x)) \text {Ei}(2 \log (x))}{5 e^3}-\frac {16 \log (x) \text {Ei}(2 \log (x))}{5 e^3}+\frac {8 x^2}{5 e^3}+\frac {4 x^2 (1-2 \log (x))}{5 e^3 \log (x)}-4 e^{10-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2194
Rule 2306
Rule 2309
Rule 2366
Rule 6482
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-4 x+8 x \log (x)+20 e^{13-x} \log ^2(x)}{\log ^2(x)} \, dx}{5 e^3}\\ &=\frac {\int \left (20 e^{13-x}+\frac {4 x (-1+2 \log (x))}{\log ^2(x)}\right ) \, dx}{5 e^3}\\ &=\frac {4 \int \frac {x (-1+2 \log (x))}{\log ^2(x)} \, dx}{5 e^3}+\frac {4 \int e^{13-x} \, dx}{e^3}\\ &=-4 e^{10-x}-\frac {8 \text {Ei}(2 \log (x)) (1-2 \log (x))}{5 e^3}+\frac {4 x^2 (1-2 \log (x))}{5 e^3 \log (x)}-\frac {8 \int \left (\frac {2 \text {Ei}(2 \log (x))}{x}-\frac {x}{\log (x)}\right ) \, dx}{5 e^3}\\ &=-4 e^{10-x}-\frac {8 \text {Ei}(2 \log (x)) (1-2 \log (x))}{5 e^3}+\frac {4 x^2 (1-2 \log (x))}{5 e^3 \log (x)}+\frac {8 \int \frac {x}{\log (x)} \, dx}{5 e^3}-\frac {16 \int \frac {\text {Ei}(2 \log (x))}{x} \, dx}{5 e^3}\\ &=-4 e^{10-x}-\frac {8 \text {Ei}(2 \log (x)) (1-2 \log (x))}{5 e^3}+\frac {4 x^2 (1-2 \log (x))}{5 e^3 \log (x)}+\frac {8 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )}{5 e^3}-\frac {16 \operatorname {Subst}(\int \text {Ei}(2 x) \, dx,x,\log (x))}{5 e^3}\\ &=-4 e^{10-x}+\frac {8 x^2}{5 e^3}+\frac {8 \text {Ei}(2 \log (x))}{5 e^3}-\frac {8 \text {Ei}(2 \log (x)) (1-2 \log (x))}{5 e^3}+\frac {4 x^2 (1-2 \log (x))}{5 e^3 \log (x)}-\frac {16 \text {Ei}(2 \log (x)) \log (x)}{5 e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 26, normalized size = 0.96 \begin {gather*} \frac {-20 e^{13-x}+\frac {4 x^2}{\log (x)}}{5 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 22, normalized size = 0.81 \begin {gather*} \frac {4 \, {\left (x^{2} - 5 \, e^{\left (-x + 13\right )} \log \relax (x)\right )} e^{\left (-3\right )}}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 0.81 \begin {gather*} \frac {4 \, {\left (x^{2} - 5 \, e^{\left (-x + 13\right )} \log \relax (x)\right )} e^{\left (-3\right )}}{5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 21, normalized size = 0.78
method | result | size |
risch | \(-4 \,{\mathrm e}^{10-x}+\frac {4 x^{2} {\mathrm e}^{-3}}{5 \ln \relax (x )}\) | \(21\) |
default | \(\frac {4 \,{\mathrm e}^{-3} \left (\frac {x^{2}}{\ln \relax (x )}-5 \,{\mathrm e}^{3} {\mathrm e}^{10-x}\right )}{5}\) | \(26\) |
norman | \(\frac {\frac {4 x^{2} {\mathrm e}^{-3}}{5}-4 \,{\mathrm e}^{10-x} \ln \relax (x )}{\ln \relax (x )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 28, normalized size = 1.04 \begin {gather*} \frac {4}{5} \, {\left (2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) - 5 \, e^{\left (-x + 13\right )} - 2 \, \Gamma \left (-1, -2 \, \log \relax (x)\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.61, size = 20, normalized size = 0.74 \begin {gather*} \frac {4\,x^2\,{\mathrm {e}}^{-3}}{5\,\ln \relax (x)}-4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 19, normalized size = 0.70 \begin {gather*} \frac {4 x^{2}}{5 e^{3} \log {\relax (x )}} - 4 e^{10 - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________