Optimal. Leaf size=38 \[ \left (-e^{4+x}+\frac {(i \pi +\log (3))^2}{4 x^2 \log ^2\left (x-\log ^2(x)\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 5.52, antiderivative size = 109, normalized size of antiderivative = 2.87, number of steps used = 8, number of rules used = 7, integrand size = 262, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {2561, 6688, 12, 6742, 2194, 6687, 2288} \begin {gather*} \frac {(\pi -i \log (3))^4}{16 x^4 \log ^4\left (x-\log ^2(x)\right )}+\frac {e^{x+4} (\pi -i \log (3))^2 \left (x^2 \log \left (x-\log ^2(x)\right )-x \log ^2(x) \log \left (x-\log ^2(x)\right )\right )}{2 x^3 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )}+e^{2 x+8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2288
Rule 2561
Rule 6687
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x (i \pi +\log (3))^4-2 (i \pi +\log (3))^4 \log (x)+\left (x (i \pi +\log (3))^4-(i \pi +\log (3))^4 \log ^2(x)\right ) \log \left (x-\log ^2(x)\right )+\left (-4 e^{4+x} x^3 (i \pi +\log (3))^2+8 e^{4+x} x^2 (i \pi +\log (3))^2 \log (x)\right ) \log ^2\left (x-\log ^2(x)\right )+\left (e^{4+x} \left (-4 x^3+2 x^4\right ) (i \pi +\log (3))^2+e^{4+x} \left (4 x^2-2 x^3\right ) (i \pi +\log (3))^2 \log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )+\left (-8 e^{8+2 x} x^6+8 e^{8+2 x} x^5 \log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )}{x^5 \left (-4 x+4 \log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )} \, dx\\ &=\int \frac {-x (i \pi +\log (3))^4+2 (i \pi +\log (3))^4 \log (x)-(i \pi +\log (3))^4 \left (x-\log ^2(x)\right ) \log \left (x-\log ^2(x)\right )-4 e^{4+x} x^2 (\pi -i \log (3))^2 (x-2 \log (x)) \log ^2\left (x-\log ^2(x)\right )+2 e^{4+x} (-2+x) x^2 (\pi -i \log (3))^2 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )+8 e^{8+2 x} x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )}{4 x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )} \, dx\\ &=\frac {1}{4} \int \frac {-x (i \pi +\log (3))^4+2 (i \pi +\log (3))^4 \log (x)-(i \pi +\log (3))^4 \left (x-\log ^2(x)\right ) \log \left (x-\log ^2(x)\right )-4 e^{4+x} x^2 (\pi -i \log (3))^2 (x-2 \log (x)) \log ^2\left (x-\log ^2(x)\right )+2 e^{4+x} (-2+x) x^2 (\pi -i \log (3))^2 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )+8 e^{8+2 x} x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )}{x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )} \, dx\\ &=\frac {1}{4} \int \left (8 e^{8+2 x}-\frac {(\pi -i \log (3))^4 \left (x-2 \log (x)+x \log \left (x-\log ^2(x)\right )-\log ^2(x) \log \left (x-\log ^2(x)\right )\right )}{x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )}+\frac {2 e^{4+x} (\pi -i \log (3))^2 \left (-2 x+4 \log (x)-2 x \log \left (x-\log ^2(x)\right )+x^2 \log \left (x-\log ^2(x)\right )+2 \log ^2(x) \log \left (x-\log ^2(x)\right )-x \log ^2(x) \log \left (x-\log ^2(x)\right )\right )}{x^3 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )}\right ) \, dx\\ &=2 \int e^{8+2 x} \, dx+\frac {1}{2} (\pi -i \log (3))^2 \int \frac {e^{4+x} \left (-2 x+4 \log (x)-2 x \log \left (x-\log ^2(x)\right )+x^2 \log \left (x-\log ^2(x)\right )+2 \log ^2(x) \log \left (x-\log ^2(x)\right )-x \log ^2(x) \log \left (x-\log ^2(x)\right )\right )}{x^3 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )} \, dx-\frac {1}{4} (\pi -i \log (3))^4 \int \frac {x-2 \log (x)+x \log \left (x-\log ^2(x)\right )-\log ^2(x) \log \left (x-\log ^2(x)\right )}{x^5 \left (x-\log ^2(x)\right ) \log ^5\left (x-\log ^2(x)\right )} \, dx\\ &=e^{8+2 x}+\frac {(\pi -i \log (3))^4}{16 x^4 \log ^4\left (x-\log ^2(x)\right )}+\frac {e^{4+x} (\pi -i \log (3))^2 \left (x^2 \log \left (x-\log ^2(x)\right )-x \log ^2(x) \log \left (x-\log ^2(x)\right )\right )}{2 x^3 \left (x-\log ^2(x)\right ) \log ^3\left (x-\log ^2(x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 52, normalized size = 1.37 \begin {gather*} \frac {\left ((\pi -i \log (3))^2+4 e^{4+x} x^2 \log ^2\left (x-\log ^2(x)\right )\right )^2}{16 x^4 \log ^4\left (x-\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 111, normalized size = 2.92 \begin {gather*} \frac {16 \, x^{4} e^{\left (2 \, x + 8\right )} \log \left (-\log \relax (x)^{2} + x\right )^{4} + \pi ^{4} - 4 i \, \pi ^{3} \log \relax (3) - 6 \, \pi ^{2} \log \relax (3)^{2} + 4 i \, \pi \log \relax (3)^{3} + \log \relax (3)^{4} + 8 \, {\left (\pi ^{2} x^{2} - 2 i \, \pi x^{2} \log \relax (3) - x^{2} \log \relax (3)^{2}\right )} e^{\left (x + 4\right )} \log \left (-\log \relax (x)^{2} + x\right )^{2}}{16 \, x^{4} \log \left (-\log \relax (x)^{2} + x\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 139, normalized size = 3.66 \begin {gather*} \frac {16 \, x^{4} e^{\left (2 \, x + 8\right )} \log \left (-\log \relax (x)^{2} + x\right )^{4} + 8 \, \pi ^{2} x^{2} e^{\left (x + 4\right )} \log \left (-\log \relax (x)^{2} + x\right )^{2} - 16 i \, \pi x^{2} e^{\left (x + 4\right )} \log \relax (3) \log \left (-\log \relax (x)^{2} + x\right )^{2} - 8 \, x^{2} e^{\left (x + 4\right )} \log \relax (3)^{2} \log \left (-\log \relax (x)^{2} + x\right )^{2} + \pi ^{4} - 4 i \, \pi ^{3} \log \relax (3) - 6 \, \pi ^{2} \log \relax (3)^{2} + 4 i \, \pi \log \relax (3)^{3} + \log \relax (3)^{4}}{16 \, x^{4} \log \left (-\log \relax (x)^{2} + x\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.36, size = 128, normalized size = 3.37
method | result | size |
risch | \({\mathrm e}^{2 x +8}+\frac {-16 i \pi \ln \relax (3) x^{2} {\mathrm e}^{4+x} \ln \left (-\ln \relax (x )^{2}+x \right )^{2}+8 \pi ^{2} x^{2} {\mathrm e}^{4+x} \ln \left (-\ln \relax (x )^{2}+x \right )^{2}-8 \ln \relax (3)^{2} x^{2} {\mathrm e}^{4+x} \ln \left (-\ln \relax (x )^{2}+x \right )^{2}-4 i \ln \relax (3) \pi ^{3}+4 i \ln \relax (3)^{3} \pi +\pi ^{4}-6 \pi ^{2} \ln \relax (3)^{2}+\ln \relax (3)^{4}}{16 x^{4} \ln \left (-\ln \relax (x )^{2}+x \right )^{4}}\) | \(128\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.82, size = 104, normalized size = 2.74 \begin {gather*} \frac {16 \, x^{4} e^{\left (2 \, x + 8\right )} \log \left (-\log \relax (x)^{2} + x\right )^{4} + 8 \, {\left (\pi ^{2} - 2 i \, \pi \log \relax (3) - \log \relax (3)^{2}\right )} x^{2} e^{\left (x + 4\right )} \log \left (-\log \relax (x)^{2} + x\right )^{2} + \pi ^{4} - 4 i \, \pi ^{3} \log \relax (3) - 6 \, \pi ^{2} \log \relax (3)^{2} + 4 i \, \pi \log \relax (3)^{3} + \log \relax (3)^{4}}{16 \, x^{4} \log \left (-\log \relax (x)^{2} + x\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________