Optimal. Leaf size=33 \[ -1+\frac {x^3 \left (3-x+x^4\right )}{2 \left (-e^x+(3-x)^2+x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {81 x^2-66 x^3+18 x^4-2 x^5+63 x^6-30 x^7+5 x^8+e^x \left (-9 x^2+7 x^3-x^4-7 x^6+x^7\right )}{162+2 e^{2 x}-180 x+86 x^2-20 x^3+2 x^4+e^x \left (-36+20 x-4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (81-66 x+18 x^2-2 x^3+63 x^4-30 x^5+5 x^6+e^x \left (-9+7 x-x^2-7 x^4+x^5\right )\right )}{2 \left (9-e^x-5 x+x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {x^2 \left (81-66 x+18 x^2-2 x^3+63 x^4-30 x^5+5 x^6+e^x \left (-9+7 x-x^2-7 x^4+x^5\right )\right )}{\left (9-e^x-5 x+x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {x^2 \left (-9+7 x-x^2-7 x^4+x^5\right )}{9-e^x-5 x+x^2}+\frac {x^3 \left (42-35 x+10 x^2-x^3+14 x^4-7 x^5+x^6\right )}{\left (9-e^x-5 x+x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^2 \left (-9+7 x-x^2-7 x^4+x^5\right )}{9-e^x-5 x+x^2} \, dx\right )+\frac {1}{2} \int \frac {x^3 \left (42-35 x+10 x^2-x^3+14 x^4-7 x^5+x^6\right )}{\left (9-e^x-5 x+x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {42 x^3}{\left (9-e^x-5 x+x^2\right )^2}-\frac {35 x^4}{\left (9-e^x-5 x+x^2\right )^2}+\frac {10 x^5}{\left (9-e^x-5 x+x^2\right )^2}-\frac {x^6}{\left (9-e^x-5 x+x^2\right )^2}+\frac {14 x^7}{\left (9-e^x-5 x+x^2\right )^2}-\frac {7 x^8}{\left (9-e^x-5 x+x^2\right )^2}+\frac {x^9}{\left (9-e^x-5 x+x^2\right )^2}\right ) \, dx-\frac {1}{2} \int \left (-\frac {9 x^2}{9-e^x-5 x+x^2}+\frac {7 x^3}{9-e^x-5 x+x^2}-\frac {x^4}{9-e^x-5 x+x^2}-\frac {7 x^6}{9-e^x-5 x+x^2}+\frac {x^7}{9-e^x-5 x+x^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^6}{\left (9-e^x-5 x+x^2\right )^2} \, dx\right )+\frac {1}{2} \int \frac {x^9}{\left (9-e^x-5 x+x^2\right )^2} \, dx+\frac {1}{2} \int \frac {x^4}{9-e^x-5 x+x^2} \, dx-\frac {1}{2} \int \frac {x^7}{9-e^x-5 x+x^2} \, dx-\frac {7}{2} \int \frac {x^8}{\left (9-e^x-5 x+x^2\right )^2} \, dx-\frac {7}{2} \int \frac {x^3}{9-e^x-5 x+x^2} \, dx+\frac {7}{2} \int \frac {x^6}{9-e^x-5 x+x^2} \, dx+\frac {9}{2} \int \frac {x^2}{9-e^x-5 x+x^2} \, dx+5 \int \frac {x^5}{\left (9-e^x-5 x+x^2\right )^2} \, dx+7 \int \frac {x^7}{\left (9-e^x-5 x+x^2\right )^2} \, dx-\frac {35}{2} \int \frac {x^4}{\left (9-e^x-5 x+x^2\right )^2} \, dx+21 \int \frac {x^3}{\left (9-e^x-5 x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 30, normalized size = 0.91 \begin {gather*} \frac {x^3 \left (3-x+x^4\right )}{2 \left (9-e^x-5 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 30, normalized size = 0.91 \begin {gather*} \frac {x^{7} - x^{4} + 3 \, x^{3}}{2 \, {\left (x^{2} - 5 \, x - e^{x} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 30, normalized size = 0.91 \begin {gather*} \frac {x^{7} - x^{4} + 3 \, x^{3}}{2 \, {\left (x^{2} - 5 \, x - e^{x} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 0.85
method | result | size |
risch | \(\frac {\left (x^{4}-x +3\right ) x^{3}}{2 x^{2}-10 x -2 \,{\mathrm e}^{x}+18}\) | \(28\) |
norman | \(\frac {\frac {3}{2} x^{3}-\frac {1}{2} x^{4}+\frac {1}{2} x^{7}}{x^{2}-5 x -{\mathrm e}^{x}+9}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 30, normalized size = 0.91 \begin {gather*} \frac {x^{7} - x^{4} + 3 \, x^{3}}{2 \, {\left (x^{2} - 5 \, x - e^{x} + 9\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.14, size = 32, normalized size = 0.97 \begin {gather*} -\frac {x^7-x^4+3\,x^3}{10\,x+2\,{\mathrm {e}}^x-2\,x^2-18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 26, normalized size = 0.79 \begin {gather*} \frac {- x^{7} + x^{4} - 3 x^{3}}{- 2 x^{2} + 10 x + 2 e^{x} - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________