Optimal. Leaf size=22 \[ -1+2 e^x+e^{3 x^2}+\log \left (e^x+2 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2+2 e^{2 x}+e^x (1+4 x)+e^{3 x^2} \left (6 e^x x+12 x^2\right )}{e^x+2 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6 e^{3 x^2} x+\frac {2+e^x+2 e^{2 x}+4 e^x x}{e^x+2 x}\right ) \, dx\\ &=6 \int e^{3 x^2} x \, dx+\int \frac {2+e^x+2 e^{2 x}+4 e^x x}{e^x+2 x} \, dx\\ &=e^{3 x^2}+\int \left (1+2 e^x-\frac {2 (-1+x)}{e^x+2 x}\right ) \, dx\\ &=e^{3 x^2}+x+2 \int e^x \, dx-2 \int \frac {-1+x}{e^x+2 x} \, dx\\ &=2 e^x+e^{3 x^2}+x-2 \int \left (-\frac {1}{e^x+2 x}+\frac {x}{e^x+2 x}\right ) \, dx\\ &=2 e^x+e^{3 x^2}+x+2 \int \frac {1}{e^x+2 x} \, dx-2 \int \frac {x}{e^x+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 21, normalized size = 0.95 \begin {gather*} 2 e^x+e^{3 x^2}+\log \left (e^x+2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 18, normalized size = 0.82 \begin {gather*} e^{\left (3 \, x^{2}\right )} + 2 \, e^{x} + \log \left (2 \, x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 18, normalized size = 0.82 \begin {gather*} e^{\left (3 \, x^{2}\right )} + 2 \, e^{x} + \log \left (2 \, x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.86
method | result | size |
norman | \(2 \,{\mathrm e}^{x}+{\mathrm e}^{3 x^{2}}+\ln \left ({\mathrm e}^{x}+2 x \right )\) | \(19\) |
risch | \(2 \,{\mathrm e}^{x}+{\mathrm e}^{3 x^{2}}+\ln \left ({\mathrm e}^{x}+2 x \right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 18, normalized size = 0.82 \begin {gather*} e^{\left (3 \, x^{2}\right )} + 2 \, e^{x} + \log \left (2 \, x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 18, normalized size = 0.82 \begin {gather*} \ln \left (2\,x+{\mathrm {e}}^x\right )+{\mathrm {e}}^{3\,x^2}+2\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 19, normalized size = 0.86 \begin {gather*} 2 e^{x} + e^{3 x^{2}} + \log {\left (2 x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________