Optimal. Leaf size=25 \[ 5+x+\frac {4 \left ((4-\log (2))^2-\log \left (2 e^x\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {14, 2168, 29} \begin {gather*} x-\frac {4 \log \left (2 e^x\right )}{x}+\frac {4 (4-\log (2))^2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 2168
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-4 x+x^2-4 (4-\log (2))^2}{x^2}+\frac {4 \log \left (2 e^x\right )}{x^2}\right ) \, dx\\ &=4 \int \frac {\log \left (2 e^x\right )}{x^2} \, dx+\int \frac {-4 x+x^2-4 (4-\log (2))^2}{x^2} \, dx\\ &=-\frac {4 \log \left (2 e^x\right )}{x}+4 \int \frac {1}{x} \, dx+\int \left (1-\frac {4}{x}-\frac {4 (-4+\log (2))^2}{x^2}\right ) \, dx\\ &=x+\frac {4 (4-\log (2))^2}{x}-\frac {4 \log \left (2 e^x\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 34, normalized size = 1.36 \begin {gather*} \frac {64}{x}+x-\frac {32 \log (2)}{x}+\frac {4 \log ^2(2)}{x}-\frac {4 \log \left (2 e^x\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 19, normalized size = 0.76 \begin {gather*} \frac {x^{2} + 4 \, \log \relax (2)^{2} - 36 \, \log \relax (2) + 64}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 17, normalized size = 0.68 \begin {gather*} x + \frac {4 \, {\left (\log \relax (2)^{2} - 9 \, \log \relax (2) + 16\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.16
method | result | size |
risch | \(-\frac {4 \ln \left ({\mathrm e}^{x}\right )}{x}+\frac {64+4 \ln \relax (2)^{2}+x^{2}-36 \ln \relax (2)}{x}\) | \(29\) |
norman | \(\frac {x \ln \left (2 \,{\mathrm e}^{x}\right )+64-4 \ln \left (2 \,{\mathrm e}^{x}\right )+4 \ln \relax (2)^{2}-32 \ln \relax (2)}{x}\) | \(31\) |
default | \(-\frac {4 \ln \left (2 \,{\mathrm e}^{x}\right )}{x}+x +\frac {4 \ln \relax (2)^{2}}{x}-\frac {32 \ln \relax (2)}{x}+\frac {64}{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 33, normalized size = 1.32 \begin {gather*} x + \frac {4 \, \log \relax (2)^{2}}{x} - \frac {32 \, \log \relax (2)}{x} - \frac {4 \, \log \left (2 \, e^{x}\right )}{x} + \frac {64}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.13, size = 18, normalized size = 0.72 \begin {gather*} x+\frac {4\,{\ln \relax (2)}^2-36\,\ln \relax (2)+64}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 15, normalized size = 0.60 \begin {gather*} x + \frac {- 36 \log {\relax (2 )} + 4 \log {\relax (2 )}^{2} + 64}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________