Optimal. Leaf size=16 \[ e^{-1+\frac {9 e^{-2 x}}{10000 x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (9-10000 e^{2 x} x^2\right )}{10000 x^2}\right ) (-9-9 x)}{5000 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (-2 x+\frac {e^{-2 x} \left (9-10000 e^{2 x} x^2\right )}{10000 x^2}\right ) (-9-9 x)}{x^3} \, dx}{5000}\\ &=\frac {\int \frac {9 e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x} (-1-x)}{x^3} \, dx}{5000}\\ &=\frac {9 \int \frac {e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x} (-1-x)}{x^3} \, dx}{5000}\\ &=\frac {9 \int \left (-\frac {e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x}}{x^3}-\frac {e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x}}{x^2}\right ) \, dx}{5000}\\ &=-\frac {9 \int \frac {e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x}}{x^3} \, dx}{5000}-\frac {9 \int \frac {e^{-1+\frac {9 e^{-2 x}}{10000 x^2}-2 x}}{x^2} \, dx}{5000}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 16, normalized size = 1.00 \begin {gather*} e^{-1+\frac {9 e^{-2 x}}{10000 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.26, size = 31, normalized size = 1.94 \begin {gather*} e^{\left (2 \, x - \frac {{\left (10000 \, {\left (2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} - 9\right )} e^{\left (-2 \, x\right )}}{10000 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 27, normalized size = 1.69 \begin {gather*} e^{\left (2 \, x - \frac {20000 \, x^{3} + 10000 \, x^{2} - 9 \, e^{\left (-2 \, x\right )}}{10000 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 1.38
method | result | size |
norman | \({\mathrm e}^{\frac {\left (-10000 \,{\mathrm e}^{2 x} x^{2}+9\right ) {\mathrm e}^{-2 x}}{10000 x^{2}}}\) | \(22\) |
risch | \({\mathrm e}^{-\frac {\left (10000 \,{\mathrm e}^{2 x} x^{2}-9\right ) {\mathrm e}^{-2 x}}{10000 x^{2}}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 12, normalized size = 0.75 \begin {gather*} e^{\left (\frac {9 \, e^{\left (-2 \, x\right )}}{10000 \, x^{2}} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.30, size = 13, normalized size = 0.81 \begin {gather*} {\mathrm {e}}^{-1}\,{\mathrm {e}}^{\frac {9\,{\mathrm {e}}^{-2\,x}}{10000\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 20, normalized size = 1.25 \begin {gather*} e^{\frac {\left (- x^{2} e^{2 x} + \frac {9}{10000}\right ) e^{- 2 x}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________