Optimal. Leaf size=23 \[ -4+e^{\frac {\log ^4(3)}{625 (-5+x)^4 x^2}}-x \]
________________________________________________________________________________________
Rubi [B] time = 1.52, antiderivative size = 76, normalized size of antiderivative = 3.30, number of steps used = 14, number of rules used = 6, integrand size = 110, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {6741, 12, 6742, 43, 37, 6706} \begin {gather*} \frac {25 x^4}{2 (5-x)^4}+e^{\frac {\log ^4(3)}{625 (5-x)^4 x^2}}-x+\frac {250}{5-x}-\frac {1875}{(5-x)^2}+\frac {6250}{(5-x)^3}-\frac {15625}{2 (5-x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 37
Rule 43
Rule 6706
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1953125 x^3+1953125 x^4-781250 x^5+156250 x^6-15625 x^7+625 x^8-e^{\frac {\log ^4(3)}{390625 x^2-312500 x^3+93750 x^4-12500 x^5+625 x^6}} (10-6 x) \log ^4(3)}{625 (5-x)^5 x^3} \, dx\\ &=\frac {1}{625} \int \frac {-1953125 x^3+1953125 x^4-781250 x^5+156250 x^6-15625 x^7+625 x^8-e^{\frac {\log ^4(3)}{390625 x^2-312500 x^3+93750 x^4-12500 x^5+625 x^6}} (10-6 x) \log ^4(3)}{(5-x)^5 x^3} \, dx\\ &=\frac {1}{625} \int \left (\frac {1953125}{(-5+x)^5}-\frac {1953125 x}{(-5+x)^5}+\frac {781250 x^2}{(-5+x)^5}-\frac {156250 x^3}{(-5+x)^5}+\frac {15625 x^4}{(-5+x)^5}-\frac {625 x^5}{(-5+x)^5}-\frac {2 e^{\frac {\log ^4(3)}{625 (-5+x)^4 x^2}} (-5+3 x) \log ^4(3)}{(-5+x)^5 x^3}\right ) \, dx\\ &=-\frac {3125}{4 (5-x)^4}+25 \int \frac {x^4}{(-5+x)^5} \, dx-250 \int \frac {x^3}{(-5+x)^5} \, dx+1250 \int \frac {x^2}{(-5+x)^5} \, dx-3125 \int \frac {x}{(-5+x)^5} \, dx-\frac {1}{625} \left (2 \log ^4(3)\right ) \int \frac {e^{\frac {\log ^4(3)}{625 (-5+x)^4 x^2}} (-5+3 x)}{(-5+x)^5 x^3} \, dx-\int \frac {x^5}{(-5+x)^5} \, dx\\ &=e^{\frac {\log ^4(3)}{625 (5-x)^4 x^2}}-\frac {3125}{4 (5-x)^4}+\frac {25 x^4}{2 (5-x)^4}+25 \int \left (\frac {625}{(-5+x)^5}+\frac {500}{(-5+x)^4}+\frac {150}{(-5+x)^3}+\frac {20}{(-5+x)^2}+\frac {1}{-5+x}\right ) \, dx+1250 \int \left (\frac {25}{(-5+x)^5}+\frac {10}{(-5+x)^4}+\frac {1}{(-5+x)^3}\right ) \, dx-3125 \int \left (\frac {5}{(-5+x)^5}+\frac {1}{(-5+x)^4}\right ) \, dx-\int \left (1+\frac {3125}{(-5+x)^5}+\frac {3125}{(-5+x)^4}+\frac {1250}{(-5+x)^3}+\frac {250}{(-5+x)^2}+\frac {25}{-5+x}\right ) \, dx\\ &=e^{\frac {\log ^4(3)}{625 (5-x)^4 x^2}}-\frac {15625}{2 (5-x)^4}+\frac {6250}{(5-x)^3}-\frac {1875}{(5-x)^2}+\frac {250}{5-x}-x+\frac {25 x^4}{2 (5-x)^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 22, normalized size = 0.96 \begin {gather*} e^{\frac {\log ^4(3)}{625 (-5+x)^4 x^2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 37, normalized size = 1.61 \begin {gather*} -x + e^{\left (\frac {\log \relax (3)^{4}}{625 \, {\left (x^{6} - 20 \, x^{5} + 150 \, x^{4} - 500 \, x^{3} + 625 \, x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 37, normalized size = 1.61 \begin {gather*} -x + e^{\left (\frac {\log \relax (3)^{4}}{625 \, {\left (x^{6} - 20 \, x^{5} + 150 \, x^{4} - 500 \, x^{3} + 625 \, x^{2}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.42, size = 20, normalized size = 0.87
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {\ln \relax (3)^{4}}{625 x^{2} \left (x -5\right )^{4}}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 290, normalized size = 12.61 \begin {gather*} -x - \frac {125 \, {\left (48 \, x^{3} - 540 \, x^{2} + 2200 \, x - 3125\right )}}{12 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} + \frac {125 \, {\left (24 \, x^{3} - 300 \, x^{2} + 1300 \, x - 1925\right )}}{12 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} + \frac {125 \, {\left (4 \, x^{3} - 30 \, x^{2} + 100 \, x - 125\right )}}{2 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} - \frac {625 \, {\left (6 \, x^{2} - 20 \, x + 25\right )}}{6 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} + \frac {3125 \, {\left (4 \, x - 5\right )}}{12 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} - \frac {3125}{4 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} + e^{\left (\frac {\log \relax (3)^{4}}{15625 \, {\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )}} - \frac {2 \, \log \relax (3)^{4}}{78125 \, {\left (x^{3} - 15 \, x^{2} + 75 \, x - 125\right )}} + \frac {3 \, \log \relax (3)^{4}}{390625 \, {\left (x^{2} - 10 \, x + 25\right )}} - \frac {4 \, \log \relax (3)^{4}}{1953125 \, {\left (x - 5\right )}} + \frac {4 \, \log \relax (3)^{4}}{1953125 \, x} + \frac {\log \relax (3)^{4}}{390625 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.00, size = 38, normalized size = 1.65 \begin {gather*} {\mathrm {e}}^{\frac {{\ln \relax (3)}^4}{625\,x^6-12500\,x^5+93750\,x^4-312500\,x^3+390625\,x^2}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.82, size = 32, normalized size = 1.39 \begin {gather*} - x + e^{\frac {\log {\relax (3 )}^{4}}{625 x^{6} - 12500 x^{5} + 93750 x^{4} - 312500 x^{3} + 390625 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________