Optimal. Leaf size=25 \[ \left (5+e^x\right )^2+\frac {1}{2} \left (-4+e^{-\frac {11}{4}+e^x} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{2} e^{\frac {1}{4} \left (-11+4 e^x\right )} \left (1+e^{\frac {1}{4} \left (11-4 e^x\right )} \left (20 e^x+4 e^{2 x}\right )+e^x x\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{\frac {1}{4} \left (-11+4 e^x\right )} \left (1+e^{\frac {1}{4} \left (11-4 e^x\right )} \left (20 e^x+4 e^{2 x}\right )+e^x x\right ) \, dx\\ &=\frac {1}{2} \int \left (e^{-\frac {11}{4}+e^x}+20 e^x+4 e^{2 x}+e^{-\frac {11}{4}+e^x+x} x\right ) \, dx\\ &=\frac {1}{2} \int e^{-\frac {11}{4}+e^x} \, dx+\frac {1}{2} \int e^{-\frac {11}{4}+e^x+x} x \, dx+2 \int e^{2 x} \, dx+10 \int e^x \, dx\\ &=10 e^x+e^{2 x}+\frac {1}{2} \int e^{-\frac {11}{4}+e^x+x} x \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {e^{-\frac {11}{4}+x}}{x} \, dx,x,e^x\right )\\ &=10 e^x+e^{2 x}+\frac {\text {Ei}\left (e^x\right )}{2 e^{11/4}}+\frac {1}{2} \int e^{-\frac {11}{4}+e^x+x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.12 \begin {gather*} \frac {1}{2} \left (20 e^x+2 e^{2 x}+e^{-\frac {11}{4}+e^x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 17, normalized size = 0.68 \begin {gather*} \frac {1}{2} \, x e^{\left (e^{x} - \frac {11}{4}\right )} + e^{\left (2 \, x\right )} + 10 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.68 \begin {gather*} \frac {1}{2} \, x e^{\left (e^{x} - \frac {11}{4}\right )} + e^{\left (2 \, x\right )} + 10 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 0.72
method | result | size |
risch | \({\mathrm e}^{2 x}+10 \,{\mathrm e}^{x}+\frac {x \,{\mathrm e}^{{\mathrm e}^{x}-\frac {11}{4}}}{2}\) | \(18\) |
norman | \(\left ({\mathrm e}^{2 x} {\mathrm e}^{-{\mathrm e}^{x}+\frac {11}{4}}+\frac {x}{2}+10 \,{\mathrm e}^{x} {\mathrm e}^{-{\mathrm e}^{x}+\frac {11}{4}}\right ) {\mathrm e}^{{\mathrm e}^{x}-\frac {11}{4}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, {\rm Ei}\left (e^{x}\right ) e^{\left (-\frac {11}{4}\right )} + \frac {1}{2} \, x e^{\left (e^{x} - \frac {11}{4}\right )} + e^{\left (2 \, x\right )} + 10 \, e^{x} - \frac {1}{2} \, \int e^{\left (e^{x} - \frac {11}{4}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 17, normalized size = 0.68 \begin {gather*} {\mathrm {e}}^{2\,x}+10\,{\mathrm {e}}^x+\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {11}{4}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 20, normalized size = 0.80 \begin {gather*} \frac {x e^{e^{x} - \frac {11}{4}}}{2} + e^{2 x} + 10 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________