Optimal. Leaf size=19 \[ \left (1-e^{\frac {x \left (e^4+x\right )}{e^3}}+x\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 0.51, antiderivative size = 190, normalized size of antiderivative = 10.00, number of steps used = 8, number of rules used = 4, integrand size = 212, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {12, 2244, 2236, 2288} \begin {gather*} x^4+4 x^3+6 x^2+e^{\frac {4 x^2}{e^3}+4 e x}-\frac {4 e^{\frac {3 \left (x^2+e^4 x\right )}{e^3}} \left (2 x^2+2 x+e^4 (x+1)\right )}{2 x+e^4}+\frac {6 e^{\frac {2 \left (x^2+e^4 x\right )}{e^3}} \left (2 x^3+4 x^2+e^4 \left (x^2+2 x+1\right )+2 x\right )}{2 x+e^4}-\frac {4 e^{\frac {x^2+e^4 x}{e^3}} \left (2 x^4+6 x^3+6 x^2+e^4 \left (x^3+3 x^2+3 x+1\right )+2 x\right )}{2 x+e^4}+4 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2236
Rule 2244
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^{\frac {4 \left (e^4 x+x^2\right )}{e^3}} \left (4 e^4+8 x\right )+e^{\frac {3 \left (e^4 x+x^2\right )}{e^3}} \left (-4 e^3+e^4 (-12-12 x)-24 x-24 x^2\right )+e^3 \left (4+12 x+12 x^2+4 x^3\right )+e^{\frac {2 \left (e^4 x+x^2\right )}{e^3}} \left (24 x+48 x^2+24 x^3+e^3 (12+12 x)+e^4 \left (12+24 x+12 x^2\right )\right )+e^{\frac {e^4 x+x^2}{e^3}} \left (-8 x-24 x^2-24 x^3-8 x^4+e^3 \left (-12-24 x-12 x^2\right )+e^4 \left (-4-12 x-12 x^2-4 x^3\right )\right )\right ) \, dx}{e^3}\\ &=\frac {\int e^{\frac {4 \left (e^4 x+x^2\right )}{e^3}} \left (4 e^4+8 x\right ) \, dx}{e^3}+\frac {\int e^{\frac {3 \left (e^4 x+x^2\right )}{e^3}} \left (-4 e^3+e^4 (-12-12 x)-24 x-24 x^2\right ) \, dx}{e^3}+\frac {\int e^{\frac {2 \left (e^4 x+x^2\right )}{e^3}} \left (24 x+48 x^2+24 x^3+e^3 (12+12 x)+e^4 \left (12+24 x+12 x^2\right )\right ) \, dx}{e^3}+\frac {\int e^{\frac {e^4 x+x^2}{e^3}} \left (-8 x-24 x^2-24 x^3-8 x^4+e^3 \left (-12-24 x-12 x^2\right )+e^4 \left (-4-12 x-12 x^2-4 x^3\right )\right ) \, dx}{e^3}+\int \left (4+12 x+12 x^2+4 x^3\right ) \, dx\\ &=4 x+6 x^2+4 x^3+x^4-\frac {4 e^{\frac {3 \left (e^4 x+x^2\right )}{e^3}} \left (2 x+2 x^2+e^4 (1+x)\right )}{e^4+2 x}+\frac {6 e^{\frac {2 \left (e^4 x+x^2\right )}{e^3}} \left (2 x+4 x^2+2 x^3+e^4 \left (1+2 x+x^2\right )\right )}{e^4+2 x}-\frac {4 e^{\frac {e^4 x+x^2}{e^3}} \left (2 x+6 x^2+6 x^3+2 x^4+e^4 \left (1+3 x+3 x^2+x^3\right )\right )}{e^4+2 x}+\frac {\int e^{4 e x+\frac {4 x^2}{e^3}} \left (4 e^4+8 x\right ) \, dx}{e^3}\\ &=e^{4 e x+\frac {4 x^2}{e^3}}+4 x+6 x^2+4 x^3+x^4-\frac {4 e^{\frac {3 \left (e^4 x+x^2\right )}{e^3}} \left (2 x+2 x^2+e^4 (1+x)\right )}{e^4+2 x}+\frac {6 e^{\frac {2 \left (e^4 x+x^2\right )}{e^3}} \left (2 x+4 x^2+2 x^3+e^4 \left (1+2 x+x^2\right )\right )}{e^4+2 x}-\frac {4 e^{\frac {e^4 x+x^2}{e^3}} \left (2 x+6 x^2+6 x^3+2 x^4+e^4 \left (1+3 x+3 x^2+x^3\right )\right )}{e^4+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 1.00 \begin {gather*} \left (-1+e^{\frac {x \left (e^4+x\right )}{e^3}}-x\right )^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.09, size = 98, normalized size = 5.16 \begin {gather*} x^{4} + 4 \, x^{3} + 6 \, x^{2} - 4 \, {\left (x + 1\right )} e^{\left (3 \, {\left (x^{2} + x e^{4}\right )} e^{\left (-3\right )}\right )} + 6 \, {\left (x^{2} + 2 \, x + 1\right )} e^{\left (2 \, {\left (x^{2} + x e^{4}\right )} e^{\left (-3\right )}\right )} - 4 \, {\left (x^{3} + 3 \, x^{2} + 3 \, x + 1\right )} e^{\left ({\left (x^{2} + x e^{4}\right )} e^{\left (-3\right )}\right )} + 4 \, x + e^{\left (4 \, {\left (x^{2} + x e^{4}\right )} e^{\left (-3\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.50, size = 796, normalized size = 41.89 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.17, size = 131, normalized size = 6.89
method | result | size |
risch | \(x^{4}+4 x^{3}+6 x^{2}+4 x +{\mathrm e}^{4 x \left (x +{\mathrm e}^{4}\right ) {\mathrm e}^{-3}}+\left (-4 x \,{\mathrm e}^{3}-4 \,{\mathrm e}^{3}\right ) {\mathrm e}^{3 x \,{\mathrm e}^{-3} {\mathrm e}^{4}+3 \,{\mathrm e}^{-3} x^{2}-3}+\left (6 x^{2} {\mathrm e}^{3}+12 x \,{\mathrm e}^{3}+6 \,{\mathrm e}^{3}\right ) {\mathrm e}^{2 x \,{\mathrm e}^{-3} {\mathrm e}^{4}+2 \,{\mathrm e}^{-3} x^{2}-3}+\left (-4 x^{3} {\mathrm e}^{3}-12 x^{2} {\mathrm e}^{3}-12 x \,{\mathrm e}^{3}-4 \,{\mathrm e}^{3}\right ) {\mathrm e}^{x \,{\mathrm e}^{-3} {\mathrm e}^{4}+{\mathrm e}^{-3} x^{2}-3}\) | \(131\) |
norman | \(x^{4}+{\mathrm e}^{4 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}+4 x +6 x^{2}+4 x^{3}+6 \,{\mathrm e}^{2 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-4 \,{\mathrm e}^{3 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-12 x \,{\mathrm e}^{\left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}+12 x \,{\mathrm e}^{2 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-4 x \,{\mathrm e}^{3 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-12 x^{2} {\mathrm e}^{\left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}+6 x^{2} {\mathrm e}^{2 \left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-4 x^{3} {\mathrm e}^{\left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}-4 \,{\mathrm e}^{\left (x \,{\mathrm e}^{4}+x^{2}\right ) {\mathrm e}^{-3}}\) | \(200\) |
default | \(\text {Expression too large to display}\) | \(2846\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 127, normalized size = 6.68 \begin {gather*} {\left ({\left (x^{4} + 4 \, x^{3} + 6 \, x^{2} + 4 \, x\right )} e^{3} - 4 \, {\left (x e^{3} + e^{3}\right )} e^{\left (3 \, x^{2} e^{\left (-3\right )} + 3 \, x e\right )} + 6 \, {\left (x^{2} e^{3} + 2 \, x e^{3} + e^{3}\right )} e^{\left (2 \, x^{2} e^{\left (-3\right )} + 2 \, x e\right )} - 4 \, {\left (x^{3} e^{3} + 3 \, x^{2} e^{3} + 3 \, x e^{3} + e^{3}\right )} e^{\left (x^{2} e^{\left (-3\right )} + x e\right )} + e^{\left (4 \, {\left (x^{2} + x e^{4}\right )} e^{\left (-3\right )} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.99, size = 179, normalized size = 9.42 \begin {gather*} 4\,x-4\,{\mathrm {e}}^{{\mathrm {e}}^{-3}\,x^2+\mathrm {e}\,x}+6\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-3}\,x^2+2\,\mathrm {e}\,x}-4\,{\mathrm {e}}^{3\,{\mathrm {e}}^{-3}\,x^2+3\,\mathrm {e}\,x}+{\mathrm {e}}^{4\,{\mathrm {e}}^{-3}\,x^2+4\,\mathrm {e}\,x}-12\,x\,{\mathrm {e}}^{{\mathrm {e}}^{-3}\,x^2+\mathrm {e}\,x}+12\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-3}\,x^2+2\,\mathrm {e}\,x}-4\,x\,{\mathrm {e}}^{3\,{\mathrm {e}}^{-3}\,x^2+3\,\mathrm {e}\,x}-12\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^{-3}\,x^2+\mathrm {e}\,x}-4\,x^3\,{\mathrm {e}}^{{\mathrm {e}}^{-3}\,x^2+\mathrm {e}\,x}+6\,x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-3}\,x^2+2\,\mathrm {e}\,x}+6\,x^2+4\,x^3+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 114, normalized size = 6.00 \begin {gather*} x^{4} + 4 x^{3} + 6 x^{2} + 4 x + \left (- 4 x - 4\right ) e^{\frac {3 \left (x^{2} + x e^{4}\right )}{e^{3}}} + \left (6 x^{2} + 12 x + 6\right ) e^{\frac {2 \left (x^{2} + x e^{4}\right )}{e^{3}}} + \left (- 4 x^{3} - 12 x^{2} - 12 x - 4\right ) e^{\frac {x^{2} + x e^{4}}{e^{3}}} + e^{\frac {4 \left (x^{2} + x e^{4}\right )}{e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________