Optimal. Leaf size=25 \[ \frac {1}{\log \left (-2+\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^2+e^4 (-8+2 x)+e^x \left (2 e^4-x^2+x^3\right )}{\left (4 x^3-e^x x^3-x^4+2 e^{\frac {e^4}{x^2}} x^4\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-2 e^4+x^2-x^3}{x^3 \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}+\frac {4 e^{4+\frac {e^4}{x^2}}+5 x^2-2 e^{\frac {e^4}{x^2}} x^2-x^3+2 e^{\frac {e^4}{x^2}} x^3}{x^2 \left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}\right ) \, dx\\ &=\int \frac {-2 e^4+x^2-x^3}{x^3 \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx+\int \frac {4 e^{4+\frac {e^4}{x^2}}+5 x^2-2 e^{\frac {e^4}{x^2}} x^2-x^3+2 e^{\frac {e^4}{x^2}} x^3}{x^2 \left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx\\ &=\int \left (-\frac {1}{\log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}-\frac {2 e^4}{x^3 \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}+\frac {1}{x \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}\right ) \, dx+\int \left (-\frac {5}{\left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}-\frac {2 e^{\frac {e^4}{x^2}}}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}+\frac {4 e^{4+\frac {e^4}{x^2}}}{x^2 \left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}-\frac {x}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}+\frac {2 e^{\frac {e^4}{x^2}} x}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {e^4}{x^2}}}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx\right )+2 \int \frac {e^{\frac {e^4}{x^2}} x}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx+4 \int \frac {e^{4+\frac {e^4}{x^2}}}{x^2 \left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx-5 \int \frac {1}{\left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx-\left (2 e^4\right ) \int \frac {1}{x^3 \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx-\int \frac {1}{\log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx+\int \frac {1}{x \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx-\int \frac {x}{\left (4-e^x-x+2 e^{\frac {e^4}{x^2}} x\right ) \log ^2\left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 35, normalized size = 1.40 \begin {gather*} \frac {1}{\log \left (\frac {e^{-\frac {e^4}{x^2}} \left (-4+e^x+x-2 e^{\frac {e^4}{x^2}} x\right )}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 35, normalized size = 1.40 \begin {gather*} \frac {1}{\log \left (-\frac {{\left (2 \, x e^{\left (\frac {e^{4}}{x^{2}}\right )} - x - e^{x} + 4\right )} e^{\left (-\frac {e^{4}}{x^{2}}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.24, size = 66, normalized size = 2.64 \begin {gather*} \frac {1}{\log \left (-\frac {{\left (2 \, x e^{x} - x e^{\left (\frac {x^{3} - e^{4}}{x^{2}}\right )} - e^{\left (x + \frac {x^{3} - e^{4}}{x^{2}}\right )} + 4 \, e^{\left (\frac {x^{3} - e^{4}}{x^{2}}\right )}\right )} e^{\left (-x\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 515, normalized size = 20.60
method | result | size |
risch | \(\frac {2 i}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}}{x}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}}{x}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right )+\pi \,\mathrm {csgn}\left (i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right )^{2}-\pi \mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right )^{3}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}} \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (-\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x +\frac {{\mathrm e}^{x}}{2}-2\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{x^{2}}}}{x}\right )^{3}-2 \pi +2 i \ln \relax (2)+2 i \ln \left (\left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}-\frac {1}{2}\right ) x -\frac {{\mathrm e}^{x}}{2}+2\right )-2 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{\frac {{\mathrm e}^{4}}{x^{2}}}\right )}\) | \(515\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 38, normalized size = 1.52 \begin {gather*} \frac {x^{2}}{x^{2} \log \left (-2 \, x e^{\left (\frac {e^{4}}{x^{2}}\right )} + x + e^{x} - 4\right ) - x^{2} \log \relax (x) - e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.93, size = 30, normalized size = 1.20 \begin {gather*} \frac {1}{\ln \left (\frac {x+{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^2}}-4}{x}\right )-\frac {{\mathrm {e}}^4}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.77, size = 31, normalized size = 1.24 \begin {gather*} \frac {1}{\log {\left (\frac {\left (- 2 x e^{\frac {e^{4}}{x^{2}}} + x + e^{x} - 4\right ) e^{- \frac {e^{4}}{x^{2}}}}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________