Optimal. Leaf size=28 \[ x \left (x-\frac {1}{\left (3-e^{x/4}-x+\log (x)\right )^2}\right ) \log (5+x) \]
________________________________________________________________________________________
Rubi [F] time = 14.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 x+56 x^2-2 e^{3 x/4} x^2-54 x^3+18 x^4-2 x^5+e^{x/2} \left (18 x^2-6 x^3\right )+e^{x/4} \left (2 x-54 x^2+36 x^3-6 x^4\right )+\left (-2 x+54 x^2+6 e^{x/2} x^2-36 x^3+6 x^4+e^{x/4} \left (-36 x^2+12 x^3\right )\right ) \log (x)+\left (18 x^2-6 e^{x/4} x^2-6 x^3\right ) \log ^2(x)+2 x^2 \log ^3(x)+\left (-10+528 x-434 x^2+72 x^3+16 x^4-4 x^5+e^{3 x/4} \left (-20 x-4 x^2\right )+e^{x/2} \left (180 x-24 x^2-12 x^3\right )+e^{x/4} \left (10-543 x+251 x^2+12 x^3-12 x^4\right )+\left (-10+538 x-252 x^2-12 x^3+12 x^4+e^{x/2} \left (60 x+12 x^2\right )+e^{x/4} \left (-360 x+48 x^2+24 x^3\right )\right ) \log (x)+\left (180 x-24 x^2-12 x^3+e^{x/4} \left (-60 x-12 x^2\right )\right ) \log ^2(x)+\left (20 x+4 x^2\right ) \log ^3(x)\right ) \log (5+x)}{270+e^{3 x/4} (-10-2 x)-216 x+36 x^2+8 x^3-2 x^4+e^{x/2} \left (90-12 x-6 x^2\right )+e^{x/4} \left (-270+126 x+6 x^2-6 x^3\right )+\left (270-126 x-6 x^2+6 x^3+e^{x/2} (30+6 x)+e^{x/4} \left (-180+24 x+12 x^2\right )\right ) \log (x)+\left (90+e^{x/4} (-30-6 x)-12 x-6 x^2\right ) \log ^2(x)+(10+2 x) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x \left (3-28 x+e^{3 x/4} x+3 e^{x/2} (-3+x) x+27 x^2-9 x^3+x^4+e^{x/4} \left (-1+27 x-18 x^2+3 x^3\right )\right )-(5+x) \left (4 e^{3 x/4} x+12 e^{x/2} (-3+x) x+e^{x/4} \left (-2+109 x-72 x^2+12 x^3\right )+2 \left (1-53 x+54 x^2-18 x^3+2 x^4\right )\right ) \log (5+x)-6 x \left (-3+e^{x/4}+x\right ) \log ^2(x) (x+2 (5+x) \log (5+x))+2 x \log ^3(x) (x+2 (5+x) \log (5+x))+2 \log (x) \left (x \left (-1+3 \left (-3+e^{x/4}\right )^2 x+6 \left (-3+e^{x/4}\right ) x^2+3 x^3\right )+(5+x) \left (-1+6 \left (-3+e^{x/4}\right )^2 x+12 \left (-3+e^{x/4}\right ) x^2+6 x^3\right ) \log (5+x)\right )}{2 (5+x) \left (3-e^{x/4}-x+\log (x)\right )^3} \, dx\\ &=\frac {1}{2} \int \frac {-2 x \left (3-28 x+e^{3 x/4} x+3 e^{x/2} (-3+x) x+27 x^2-9 x^3+x^4+e^{x/4} \left (-1+27 x-18 x^2+3 x^3\right )\right )-(5+x) \left (4 e^{3 x/4} x+12 e^{x/2} (-3+x) x+e^{x/4} \left (-2+109 x-72 x^2+12 x^3\right )+2 \left (1-53 x+54 x^2-18 x^3+2 x^4\right )\right ) \log (5+x)-6 x \left (-3+e^{x/4}+x\right ) \log ^2(x) (x+2 (5+x) \log (5+x))+2 x \log ^3(x) (x+2 (5+x) \log (5+x))+2 \log (x) \left (x \left (-1+3 \left (-3+e^{x/4}\right )^2 x+6 \left (-3+e^{x/4}\right ) x^2+3 x^3\right )+(5+x) \left (-1+6 \left (-3+e^{x/4}\right )^2 x+12 \left (-3+e^{x/4}\right ) x^2+6 x^3\right ) \log (5+x)\right )}{(5+x) \left (3-e^{x/4}-x+\log (x)\right )^3} \, dx\\ &=\frac {1}{2} \int \left (-\frac {\left (4-7 x+x^2-x \log (x)\right ) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3}+\frac {2 x (x+10 \log (5+x)+2 x \log (5+x))}{5+x}+\frac {-2 x-10 \log (5+x)+3 x \log (5+x)+x^2 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {\left (4-7 x+x^2-x \log (x)\right ) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx\right )+\frac {1}{2} \int \frac {-2 x-10 \log (5+x)+3 x \log (5+x)+x^2 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\int \frac {x (x+10 \log (5+x)+2 x \log (5+x))}{5+x} \, dx\\ &=\frac {1}{2} \int \left (-\frac {2 x}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}-\frac {10 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}+\frac {3 x \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}+\frac {x^2 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}\right ) \, dx-\frac {1}{2} \int \left (\frac {4 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3}-\frac {7 x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3}+\frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3}-\frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3}\right ) \, dx+\int x \left (\frac {x}{5+x}+2 \log (5+x)\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx\right )+\frac {1}{2} \int \frac {x^2 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {3}{2} \int \frac {x \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-2 \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {7}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-5 \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-\int \frac {x}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\int \left (\frac {x^2}{5+x}+2 x \log (5+x)\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx\right )+\frac {1}{2} \int \frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {1}{2} \int \left (-\frac {5 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2}+\frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2}+\frac {25 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}\right ) \, dx+\frac {3}{2} \int \left (\frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2}-\frac {5 \log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}\right ) \, dx+2 \int x \log (5+x) \, dx-2 \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {7}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-5 \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\int \frac {x^2}{5+x} \, dx-\int \left (\frac {1}{\left (-3+e^{x/4}+x-\log (x)\right )^2}-\frac {5}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2}\right ) \, dx\\ &=x^2 \log (5+x)-\frac {1}{2} \int \frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {1}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {3}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-2 \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-\frac {5}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {7}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+5 \int \frac {1}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-5 \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-\frac {15}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {25}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-\int \frac {x^2}{5+x} \, dx+\int \left (-5+x+\frac {25}{5+x}\right ) \, dx-\int \frac {1}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx\\ &=-5 x+\frac {x^2}{2}+25 \log (5+x)+x^2 \log (5+x)-\frac {1}{2} \int \frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {1}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {3}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-2 \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-\frac {5}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {7}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-4 \operatorname {Subst}\left (\int \frac {1}{\left (-3+e^x+4 x-\log (4 x)\right )^2} \, dx,x,\frac {x}{4}\right )-5 \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-\frac {15}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {25}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+20 \operatorname {Subst}\left (\int \frac {1}{(5+4 x) \left (-3+e^x+4 x-\log (4 x)\right )^2} \, dx,x,\frac {x}{4}\right )-\int \left (-5+x+\frac {25}{5+x}\right ) \, dx\\ &=x^2 \log (5+x)-\frac {1}{2} \int \frac {x^2 \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {1}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {x \log (x) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx+\frac {3}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-2 \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-\frac {5}{2} \int \frac {\log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {7}{2} \int \frac {x \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^3} \, dx-4 \operatorname {Subst}\left (\int \frac {1}{\left (-3+e^x+4 x-\log (4 x)\right )^2} \, dx,x,\frac {x}{4}\right )-5 \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx-\frac {15}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+\frac {25}{2} \int \frac {\log (5+x)}{(5+x) \left (-3+e^{x/4}+x-\log (x)\right )^2} \, dx+20 \operatorname {Subst}\left (\int \frac {1}{(5+4 x) \left (-3+e^x+4 x-\log (4 x)\right )^2} \, dx,x,\frac {x}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.41, size = 75, normalized size = 2.68 \begin {gather*} \frac {x \left (-1+\left (-3+e^{x/4}\right )^2 x+2 \left (-3+e^{x/4}\right ) x^2+x^3-2 x \left (-3+e^{x/4}+x\right ) \log (x)+x \log ^2(x)\right ) \log (5+x)}{\left (-3+e^{x/4}+x-\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 112, normalized size = 4.00 \begin {gather*} \frac {{\left (x^{4} + x^{2} \log \relax (x)^{2} - 6 \, x^{3} + x^{2} e^{\left (\frac {1}{2} \, x\right )} + 9 \, x^{2} + 2 \, {\left (x^{3} - 3 \, x^{2}\right )} e^{\left (\frac {1}{4} \, x\right )} - 2 \, {\left (x^{3} + x^{2} e^{\left (\frac {1}{4} \, x\right )} - 3 \, x^{2}\right )} \log \relax (x) - x\right )} \log \left (x + 5\right )}{x^{2} + 2 \, {\left (x - 3\right )} e^{\left (\frac {1}{4} \, x\right )} - 2 \, {\left (x + e^{\left (\frac {1}{4} \, x\right )} - 3\right )} \log \relax (x) + \log \relax (x)^{2} - 6 \, x + e^{\left (\frac {1}{2} \, x\right )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.86, size = 170, normalized size = 6.07 \begin {gather*} \frac {x^{4} \log \left (x + 5\right ) + 2 \, x^{3} e^{\left (\frac {1}{4} \, x\right )} \log \left (x + 5\right ) - 2 \, x^{3} \log \left (x + 5\right ) \log \relax (x) - 2 \, x^{2} e^{\left (\frac {1}{4} \, x\right )} \log \left (x + 5\right ) \log \relax (x) + x^{2} \log \left (x + 5\right ) \log \relax (x)^{2} - 6 \, x^{3} \log \left (x + 5\right ) + x^{2} e^{\left (\frac {1}{2} \, x\right )} \log \left (x + 5\right ) - 6 \, x^{2} e^{\left (\frac {1}{4} \, x\right )} \log \left (x + 5\right ) + 6 \, x^{2} \log \left (x + 5\right ) \log \relax (x) + 9 \, x^{2} \log \left (x + 5\right ) - x \log \left (x + 5\right )}{x^{2} + 2 \, x e^{\left (\frac {1}{4} \, x\right )} - 2 \, x \log \relax (x) - 2 \, e^{\left (\frac {1}{4} \, x\right )} \log \relax (x) + \log \relax (x)^{2} - 6 \, x + e^{\left (\frac {1}{2} \, x\right )} - 6 \, e^{\left (\frac {1}{4} \, x\right )} + 6 \, \log \relax (x) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 82, normalized size = 2.93
method | result | size |
risch | \(\frac {\left (x^{3}+2 x^{2} {\mathrm e}^{\frac {x}{4}}-2 x^{2} \ln \relax (x )+x \,{\mathrm e}^{\frac {x}{2}}-2 \ln \relax (x ) {\mathrm e}^{\frac {x}{4}} x +x \ln \relax (x )^{2}-6 x^{2}-6 x \,{\mathrm e}^{\frac {x}{4}}+6 x \ln \relax (x )+9 x -1\right ) x \ln \left (5+x \right )}{\left (x +{\mathrm e}^{\frac {x}{4}}-\ln \relax (x )-3\right )^{2}}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 121, normalized size = 4.32 \begin {gather*} \frac {x^{2} e^{\left (\frac {1}{2} \, x\right )} \log \left (x + 5\right ) + 2 \, {\left (x^{3} - x^{2} \log \relax (x) - 3 \, x^{2}\right )} e^{\left (\frac {1}{4} \, x\right )} \log \left (x + 5\right ) + {\left (x^{4} + x^{2} \log \relax (x)^{2} - 6 \, x^{3} + 9 \, x^{2} - 2 \, {\left (x^{3} - 3 \, x^{2}\right )} \log \relax (x) - x\right )} \log \left (x + 5\right )}{x^{2} + 2 \, {\left (x - \log \relax (x) - 3\right )} e^{\left (\frac {1}{4} \, x\right )} - 2 \, {\left (x - 3\right )} \log \relax (x) + \log \relax (x)^{2} - 6 \, x + e^{\left (\frac {1}{2} \, x\right )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.61, size = 122, normalized size = 4.36 \begin {gather*} -\frac {\ln \left (x+5\right )\,\left (x-\frac {{\mathrm {e}}^{x/2}\,\left (x^3+5\,x^2\right )}{x+5}-\frac {\left (x^3+5\,x^2\right )\,{\left (\ln \relax (x)-x+3\right )}^2}{x+5}+\frac {2\,{\mathrm {e}}^{x/4}\,\left (x^3+5\,x^2\right )\,\left (\ln \relax (x)-x+3\right )}{x+5}\right )}{{\mathrm {e}}^{x/2}-6\,x+6\,\ln \relax (x)-{\mathrm {e}}^{x/4}\,\left (2\,\ln \relax (x)-2\,x+6\right )+{\ln \relax (x)}^2-2\,x\,\ln \relax (x)+x^2+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.37, size = 73, normalized size = 2.61 \begin {gather*} - \frac {x \log {\left (x + 5 \right )}}{x^{2} - 2 x \log {\relax (x )} - 6 x + \left (2 x - 2 \log {\relax (x )} - 6\right ) e^{\frac {x}{4}} + e^{\frac {x}{2}} + \log {\relax (x )}^{2} + 6 \log {\relax (x )} + 9} + \left (x^{2} - \frac {25}{3}\right ) \log {\left (x + 5 \right )} + \frac {25 \log {\left (3 x + 15 \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________