Optimal. Leaf size=25 \[ \frac {2 \left (1+\frac {e^x}{x}\right )^2 x}{-e^{2 x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 2.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (-4 x+4 x^2\right )+e^x \left (-4 x^2+4 x^3\right )+e^{2 x} \left (2 e^{2 x}-2 x^2+4 e^x x^2+4 x^3\right )}{e^{4 x} x^2-2 e^{2 x} x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^x \left (e^{3 x}+2 e^{2 x} x^2+2 (-1+x) x^2+e^x x \left (-2+x+2 x^2\right )\right )}{\left (e^{2 x}-x\right )^2 x^2} \, dx\\ &=2 \int \frac {e^x \left (e^{3 x}+2 e^{2 x} x^2+2 (-1+x) x^2+e^x x \left (-2+x+2 x^2\right )\right )}{\left (e^{2 x}-x\right )^2 x^2} \, dx\\ &=2 \int \left (\frac {e^x (-1+2 x) \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2 x}+\frac {e^x \left (e^x+2 x^2\right )}{\left (e^{2 x}-x\right ) x^2}\right ) \, dx\\ &=2 \int \frac {e^x (-1+2 x) \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2 x} \, dx+2 \int \frac {e^x \left (e^x+2 x^2\right )}{\left (e^{2 x}-x\right ) x^2} \, dx\\ &=2 \int \left (\frac {2 e^x}{e^{2 x}-x}+\frac {e^{2 x}}{\left (e^{2 x}-x\right ) x^2}\right ) \, dx+2 \int \left (\frac {2 e^x \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2}-\frac {e^x \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2 x}\right ) \, dx\\ &=2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right ) x^2} \, dx-2 \int \frac {e^x \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2 x} \, dx+4 \int \frac {e^x}{e^{2 x}-x} \, dx+4 \int \frac {e^x \left (e^x+2 x+e^x x\right )}{\left (e^{2 x}-x\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {2 e^x}{\left (e^{2 x}-x\right )^2}+\frac {e^{2 x}}{\left (e^{2 x}-x\right )^2}+\frac {e^{2 x}}{\left (e^{2 x}-x\right )^2 x}\right ) \, dx\right )+2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right ) x^2} \, dx+4 \int \frac {e^x}{e^{2 x}-x} \, dx+4 \int \left (\frac {e^{2 x}}{\left (e^{2 x}-x\right )^2}+\frac {2 e^x x}{\left (e^{2 x}-x\right )^2}+\frac {e^{2 x} x}{\left (e^{2 x}-x\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right )^2} \, dx\right )+2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right ) x^2} \, dx-2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right )^2 x} \, dx-4 \int \frac {e^x}{\left (e^{2 x}-x\right )^2} \, dx+4 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right )^2} \, dx+4 \int \frac {e^x}{e^{2 x}-x} \, dx+4 \int \frac {e^{2 x} x}{\left (e^{2 x}-x\right )^2} \, dx+8 \int \frac {e^x x}{\left (e^{2 x}-x\right )^2} \, dx\\ &=-\frac {1}{e^{2 x}-x}+\frac {1}{\left (e^{2 x}-x\right ) x}-\frac {2 x}{e^{2 x}-x}+2 \int \frac {1}{\left (e^{2 x}-x\right )^2} \, dx+2 \int \frac {1}{e^{2 x}-x} \, dx+2 \int \frac {e^{2 x}}{\left (e^{2 x}-x\right ) x^2} \, dx+2 \int \frac {x}{\left (e^{2 x}-x\right )^2} \, dx-4 \int \frac {e^x}{\left (e^{2 x}-x\right )^2} \, dx+4 \int \frac {e^x}{e^{2 x}-x} \, dx+8 \int \frac {e^x x}{\left (e^{2 x}-x\right )^2} \, dx-\int \frac {1}{\left (e^{2 x}-x\right )^2} \, dx+\int \frac {1}{\left (e^{2 x}-x\right ) x^2} \, dx-\int \frac {1}{\left (e^{2 x}-x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 23, normalized size = 0.92 \begin {gather*} \frac {2 \left (e^x+x\right )^2}{x \left (-e^{2 x}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 28, normalized size = 1.12 \begin {gather*} \frac {2 \, {\left (x^{2} + 2 \, x e^{x} + e^{\left (2 \, x\right )}\right )}}{x^{2} - x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 62, normalized size = 2.48 \begin {gather*} \frac {2 \, {\left (x^{3} - x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{x} - 4 \, x e^{\left (3 \, x\right )} + x e^{\left (2 \, x\right )} - e^{\left (4 \, x\right )}\right )}}{x^{3} - 2 \, x^{2} e^{\left (2 \, x\right )} + x e^{\left (4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 1.04
method | result | size |
risch | \(-\frac {2}{x}+\frac {2 x +4 \,{\mathrm e}^{x}+2}{x -{\mathrm e}^{2 x}}\) | \(26\) |
norman | \(\frac {2 x \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{x} x}{x \left (x -{\mathrm e}^{2 x}\right )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 28, normalized size = 1.12 \begin {gather*} \frac {2 \, {\left (x^{2} + 2 \, x e^{x} + e^{\left (2 \, x\right )}\right )}}{x^{2} - x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.72, size = 21, normalized size = 0.84 \begin {gather*} \frac {2\,{\left (x+{\mathrm {e}}^x\right )}^2}{x\,\left (x-{\mathrm {e}}^{2\,x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.80 \begin {gather*} \frac {- 2 x - 4 e^{x} - 2}{- x + e^{2 x}} - \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________