Optimal. Leaf size=20 \[ x^2 \log \left (-x+\frac {9 (-5-x)}{\log (5)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 23, normalized size of antiderivative = 1.15, number of steps used = 10, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6, 6688, 14, 43, 2395} \begin {gather*} x^2 \log \left (-\frac {x (9+\log (5))}{\log (5)}-\frac {45}{\log (5)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 43
Rule 2395
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 x^2+x^2 \log (5)+\left (90 x+18 x^2+2 x^2 \log (5)\right ) \log \left (\frac {-45-9 x-x \log (5)}{\log (5)}\right )}{45+x (9+\log (5))} \, dx\\ &=\int \frac {x^2 (9+\log (5))+\left (90 x+18 x^2+2 x^2 \log (5)\right ) \log \left (\frac {-45-9 x-x \log (5)}{\log (5)}\right )}{45+x (9+\log (5))} \, dx\\ &=\int x \left (\frac {x (9+\log (5))}{45+x (9+\log (5))}+2 \log \left (-\frac {45+x (9+\log (5))}{\log (5)}\right )\right ) \, dx\\ &=\int \left (\frac {x^2 (9+\log (5))}{45+x (9+\log (5))}+2 x \log \left (-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}\right )\right ) \, dx\\ &=2 \int x \log \left (-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}\right ) \, dx+(9+\log (5)) \int \frac {x^2}{45+x (9+\log (5))} \, dx\\ &=x^2 \log \left (-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}\right )+(9+\log (5)) \int \left (-\frac {45}{(9+\log (5))^2}+\frac {x}{9+\log (5)}+\frac {2025}{(9+\log (5))^2 (45+x (9+\log (5)))}\right ) \, dx+\frac {(9+\log (5)) \int \frac {x^2}{-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}} \, dx}{\log (5)}\\ &=\frac {x^2}{2}-\frac {45 x}{9+\log (5)}+\frac {2025 \log (45+x (9+\log (5)))}{(9+\log (5))^2}+x^2 \log \left (-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}\right )+\frac {(9+\log (5)) \int \left (\frac {45 \log (5)}{(9+\log (5))^2}-\frac {x \log (5)}{9+\log (5)}+\frac {2025 \log (5)}{(9+\log (5))^2 (-45-x (9+\log (5)))}\right ) \, dx}{\log (5)}\\ &=x^2 \log \left (-\frac {45}{\log (5)}-\frac {x (9+\log (5))}{\log (5)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 0.95 \begin {gather*} x^2 \log \left (-\frac {45+x (9+\log (5))}{\log (5)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 20, normalized size = 1.00 \begin {gather*} x^{2} \log \left (-\frac {x \log \relax (5) + 9 \, x + 45}{\log \relax (5)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 1.20 \begin {gather*} x^{2} \log \left (-x \log \relax (5) - 9 \, x - 45\right ) - x^{2} \log \left (\log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 1.05
method | result | size |
norman | \(x^{2} \ln \left (\frac {-x \ln \relax (5)-9 x -45}{\ln \relax (5)}\right )\) | \(21\) |
risch | \(x^{2} \ln \left (\frac {-x \ln \relax (5)-9 x -45}{\ln \relax (5)}\right )\) | \(21\) |
derivativedivides | \(-\frac {\ln \relax (5) \left (-\frac {2 \ln \relax (5) \left (\frac {\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2} \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{2}-\frac {\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2}}{4}\right )}{\ln \relax (5)+9}-\frac {90 \left (\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right ) \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )+\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}+\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5)+9}-\frac {\ln \relax (5) \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2}}{2 \left (\ln \relax (5)+9\right )}-\frac {90 \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5)+9}-\frac {2025 \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5) \left (\ln \relax (5)+9\right )}\right )}{\ln \relax (5)+9}\) | \(236\) |
default | \(-\frac {\ln \relax (5) \left (-\frac {2 \ln \relax (5) \left (\frac {\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2} \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{2}-\frac {\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2}}{4}\right )}{\ln \relax (5)+9}-\frac {90 \left (\left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right ) \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )+\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}+\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5)+9}-\frac {\ln \relax (5) \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )^{2}}{2 \left (\ln \relax (5)+9\right )}-\frac {90 \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5)+9}-\frac {2025 \ln \left (-\frac {\left (\ln \relax (5)+9\right ) x}{\ln \relax (5)}-\frac {45}{\ln \relax (5)}\right )}{\ln \relax (5) \left (\ln \relax (5)+9\right )}\right )}{\ln \relax (5)+9}\) | \(236\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 577, normalized size = 28.85 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 22, normalized size = 1.10 \begin {gather*} -x^2\,\left (\ln \left (\ln \relax (5)\right )-\ln \left (-9\,x-x\,\ln \relax (5)-45\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 19, normalized size = 0.95 \begin {gather*} x^{2} \log {\left (\frac {- 9 x - x \log {\relax (5 )} - 45}{\log {\relax (5 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________