Optimal. Leaf size=31 \[ \frac {1}{2} \left (x+4 x^2+\frac {1}{-\frac {e^{25/x}}{x}+\log (x \log (3))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{25/x} (-25-x)-x^2+e^{50/x} \left (x+8 x^2\right )+e^{25/x} \left (-2 x^2-16 x^3\right ) \log (x \log (3))+\left (x^3+8 x^4\right ) \log ^2(x \log (3))}{2 e^{50/x} x-4 e^{25/x} x^2 \log (x \log (3))+2 x^3 \log ^2(x \log (3))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{25/x} (-25-x)-x^2+e^{50/x} \left (x+8 x^2\right )+e^{25/x} \left (-2 x^2-16 x^3\right ) \log (x \log (3))+\left (x^3+8 x^4\right ) \log ^2(x \log (3))}{2 x \left (e^{25/x}-x \log (x \log (3))\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{25/x} (-25-x)-x^2+e^{50/x} \left (x+8 x^2\right )+e^{25/x} \left (-2 x^2-16 x^3\right ) \log (x \log (3))+\left (x^3+8 x^4\right ) \log ^2(x \log (3))}{x \left (e^{25/x}-x \log (x \log (3))\right )^2} \, dx\\ &=\frac {1}{2} \int \left (1+8 x+\frac {25+x}{x \left (-e^{25/x}+x \log (x \log (3))\right )}-\frac {x+25 \log (x \log (3))+x \log (x \log (3))}{\left (e^{25/x}-x \log (x \log (3))\right )^2}\right ) \, dx\\ &=\frac {x}{2}+2 x^2+\frac {1}{2} \int \frac {25+x}{x \left (-e^{25/x}+x \log (x \log (3))\right )} \, dx-\frac {1}{2} \int \frac {x+25 \log (x \log (3))+x \log (x \log (3))}{\left (e^{25/x}-x \log (x \log (3))\right )^2} \, dx\\ &=\frac {x}{2}+2 x^2-\frac {1}{2} \int \frac {x+(25+x) \log (x \log (3))}{\left (e^{25/x}-x \log (x \log (3))\right )^2} \, dx+\frac {1}{2} \int \left (-\frac {1}{e^{25/x}-x \log (x \log (3))}+\frac {25}{x \left (-e^{25/x}+x \log (x \log (3))\right )}\right ) \, dx\\ &=\frac {x}{2}+2 x^2-\frac {1}{2} \int \frac {1}{e^{25/x}-x \log (x \log (3))} \, dx-\frac {1}{2} \int \left (\frac {x}{\left (-e^{25/x}+x \log (x \log (3))\right )^2}+\frac {25 \log (x \log (3))}{\left (-e^{25/x}+x \log (x \log (3))\right )^2}+\frac {x \log (x \log (3))}{\left (-e^{25/x}+x \log (x \log (3))\right )^2}\right ) \, dx+\frac {25}{2} \int \frac {1}{x \left (-e^{25/x}+x \log (x \log (3))\right )} \, dx\\ &=\frac {x}{2}+2 x^2-\frac {1}{2} \int \frac {1}{e^{25/x}-x \log (x \log (3))} \, dx-\frac {1}{2} \int \frac {x}{\left (-e^{25/x}+x \log (x \log (3))\right )^2} \, dx-\frac {1}{2} \int \frac {x \log (x \log (3))}{\left (-e^{25/x}+x \log (x \log (3))\right )^2} \, dx-\frac {25}{2} \int \frac {\log (x \log (3))}{\left (-e^{25/x}+x \log (x \log (3))\right )^2} \, dx+\frac {25}{2} \int \frac {1}{x \left (-e^{25/x}+x \log (x \log (3))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 28, normalized size = 0.90 \begin {gather*} -\frac {1}{2} x \left (-1-4 x+\frac {1}{e^{25/x}-x \log (x \log (3))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 54, normalized size = 1.74 \begin {gather*} -\frac {{\left (4 \, x^{2} + x\right )} e^{\frac {25}{x}} - {\left (4 \, x^{3} + x^{2}\right )} \log \left (x \log \relax (3)\right ) - x}{2 \, {\left (x \log \left (x \log \relax (3)\right ) - e^{\frac {25}{x}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 72, normalized size = 2.32 \begin {gather*} \frac {4 \, x^{3} \log \relax (x) + 4 \, x^{3} \log \left (\log \relax (3)\right ) - 4 \, x^{2} e^{\frac {25}{x}} + x^{2} \log \relax (x) + x^{2} \log \left (\log \relax (3)\right ) - x e^{\frac {25}{x}} + x}{2 \, {\left (x \log \relax (x) + x \log \left (\log \relax (3)\right ) - e^{\frac {25}{x}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.00
method | result | size |
risch | \(2 x^{2}+\frac {x}{2}+\frac {x}{2 \ln \left (x \ln \relax (3)\right ) x -2 \,{\mathrm e}^{\frac {25}{x}}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 66, normalized size = 2.13 \begin {gather*} \frac {4 \, x^{3} \log \left (\log \relax (3)\right ) + x^{2} \log \left (\log \relax (3)\right ) - {\left (4 \, x^{2} + x\right )} e^{\frac {25}{x}} + {\left (4 \, x^{3} + x^{2}\right )} \log \relax (x) + x}{2 \, {\left (x \log \relax (x) + x \log \left (\log \relax (3)\right ) - e^{\frac {25}{x}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.88, size = 58, normalized size = 1.87 \begin {gather*} -\frac {x\,\left (x\,\ln \left (x\,\ln \relax (3)\right )-4\,x\,{\mathrm {e}}^{25/x}-{\mathrm {e}}^{25/x}+4\,x^2\,\ln \left (x\,\ln \relax (3)\right )+1\right )}{2\,\left ({\mathrm {e}}^{25/x}-x\,\ln \left (x\,\ln \relax (3)\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 26, normalized size = 0.84 \begin {gather*} 2 x^{2} + \frac {x}{2} - \frac {x}{- 2 x \log {\left (x \log {\relax (3 )} \right )} + 2 e^{\frac {25}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________