Optimal. Leaf size=26 \[ \frac {e^{-e^x} x \log (2)}{5 (4-x) (5+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 47, normalized size of antiderivative = 1.81, number of steps used = 1, number of rules used = 1, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {2288} \begin {gather*} \frac {e^{-e^x} \left (-x^3-x^2+20 x\right ) \log (2)}{5 \left (x^4+2 x^3-39 x^2-40 x+400\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-e^x} \left (20 x-x^2-x^3\right ) \log (2)}{5 \left (400-40 x-39 x^2+2 x^3+x^4\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 0.85 \begin {gather*} -\frac {e^{-e^x} x \log (2)}{5 \left (-20+x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 18, normalized size = 0.69 \begin {gather*} -\frac {x e^{\left (-e^{x}\right )} \log \relax (2)}{5 \, {\left (x^{2} + x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (x^{3} + x^{2} - 20 \, x\right )} e^{x} \log \relax (2) + {\left (x^{2} + 20\right )} \log \relax (2)\right )} e^{\left (-e^{x}\right )}}{5 \, {\left (x^{4} + 2 \, x^{3} - 39 \, x^{2} - 40 \, x + 400\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 19, normalized size = 0.73
method | result | size |
norman | \(-\frac {x \ln \relax (2) {\mathrm e}^{-{\mathrm e}^{x}}}{5 \left (x^{2}+x -20\right )}\) | \(19\) |
risch | \(-\frac {x \ln \relax (2) {\mathrm e}^{-{\mathrm e}^{x}}}{5 \left (x^{2}+x -20\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 18, normalized size = 0.69 \begin {gather*} -\frac {x e^{\left (-e^{x}\right )} \log \relax (2)}{5 \, {\left (x^{2} + x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.85, size = 22, normalized size = 0.85 \begin {gather*} -\frac {x\,{\mathrm {e}}^{-{\mathrm {e}}^x}\,\ln \relax (2)}{5\,\left (x^2+x-20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 20, normalized size = 0.77 \begin {gather*} - \frac {x e^{- e^{x}} \log {\relax (2 )}}{5 x^{2} + 5 x - 100} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________