Optimal. Leaf size=21 \[ 2 \left (2 \left (4-e+e^{e^x}\right )-\log (9)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 26, normalized size of antiderivative = 1.24, number of steps used = 5, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {2282, 2194} \begin {gather*} 8 e^{2 e^x}+8 e^{e^x} (8-2 e-\log (9)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=16 \int e^{2 e^x+x} \, dx+(8 (8-2 e-\log (9))) \int e^{e^x+x} \, dx\\ &=16 \operatorname {Subst}\left (\int e^{2 x} \, dx,x,e^x\right )+(8 (8-2 e-\log (9))) \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=8 e^{2 e^x}+8 e^{e^x} (8-2 e-\log (9))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 1.00 \begin {gather*} 8 e^{e^x} \left (8-2 e+e^{e^x}-\log (9)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 33, normalized size = 1.57 \begin {gather*} -8 \, {\left (2 \, {\left (e + \log \relax (3) - 4\right )} e^{\left (2 \, x + e^{x}\right )} - e^{\left (2 \, x + 2 \, e^{x}\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 0.90 \begin {gather*} -16 \, {\left (e + \log \relax (3) - 4\right )} e^{\left (e^{x}\right )} + 8 \, e^{\left (2 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 1.10
method | result | size |
norman | \(\left (-16 \ln \relax (3)-16 \,{\mathrm e}+64\right ) {\mathrm e}^{{\mathrm e}^{x}}+8 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}\) | \(23\) |
derivativedivides | \(-16 \,{\mathrm e} \,{\mathrm e}^{{\mathrm e}^{x}}-16 \,{\mathrm e}^{{\mathrm e}^{x}} \ln \relax (3)+64 \,{\mathrm e}^{{\mathrm e}^{x}}+8 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}\) | \(28\) |
default | \(-16 \,{\mathrm e} \,{\mathrm e}^{{\mathrm e}^{x}}-16 \,{\mathrm e}^{{\mathrm e}^{x}} \ln \relax (3)+64 \,{\mathrm e}^{{\mathrm e}^{x}}+8 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}\) | \(28\) |
risch | \(-16 \,{\mathrm e} \,{\mathrm e}^{{\mathrm e}^{x}}-16 \,{\mathrm e}^{{\mathrm e}^{x}} \ln \relax (3)+64 \,{\mathrm e}^{{\mathrm e}^{x}}+8 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 19, normalized size = 0.90 \begin {gather*} -16 \, {\left (e + \log \relax (3) - 4\right )} e^{\left (e^{x}\right )} + 8 \, e^{\left (2 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 18, normalized size = 0.86 \begin {gather*} 8\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\left ({\mathrm {e}}^{{\mathrm {e}}^x}-2\,\mathrm {e}-2\,\ln \relax (3)+8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 24, normalized size = 1.14 \begin {gather*} 8 e^{2 e^{x}} + \left (- 16 e - 16 \log {\relax (3 )} + 64\right ) e^{e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________