Optimal. Leaf size=18 \[ -\frac {3 e^{-1+x}}{x \log \left (-1+\frac {1}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 e^x+e^x \left (-3+6 x-3 x^2\right ) \log \left (\frac {1-x}{x}\right )}{e \left (-x^2+x^3\right ) \log ^2\left (\frac {1-x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {3 e^x+e^x \left (-3+6 x-3 x^2\right ) \log \left (\frac {1-x}{x}\right )}{\left (-x^2+x^3\right ) \log ^2\left (\frac {1-x}{x}\right )} \, dx}{e}\\ &=\frac {\int \frac {3 e^x+e^x \left (-3+6 x-3 x^2\right ) \log \left (\frac {1-x}{x}\right )}{(-1+x) x^2 \log ^2\left (\frac {1-x}{x}\right )} \, dx}{e}\\ &=\frac {\int \frac {3 e^x \left (-1+(-1+x)^2 \log \left (-1+\frac {1}{x}\right )\right )}{(1-x) x^2 \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}\\ &=\frac {3 \int \frac {e^x \left (-1+(-1+x)^2 \log \left (-1+\frac {1}{x}\right )\right )}{(1-x) x^2 \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}\\ &=\frac {3 \int \left (\frac {e^x}{(-1+x) x^2 \log ^2\left (-1+\frac {1}{x}\right )}+\frac {e^x (1-x)}{x^2 \log \left (-1+\frac {1}{x}\right )}\right ) \, dx}{e}\\ &=\frac {3 \int \frac {e^x}{(-1+x) x^2 \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}+\frac {3 \int \frac {e^x (1-x)}{x^2 \log \left (-1+\frac {1}{x}\right )} \, dx}{e}\\ &=\frac {3 \int \left (\frac {e^x}{(-1+x) \log ^2\left (-1+\frac {1}{x}\right )}-\frac {e^x}{x^2 \log ^2\left (-1+\frac {1}{x}\right )}-\frac {e^x}{x \log ^2\left (-1+\frac {1}{x}\right )}\right ) \, dx}{e}+\frac {3 \int \left (\frac {e^x}{x^2 \log \left (-1+\frac {1}{x}\right )}-\frac {e^x}{x \log \left (-1+\frac {1}{x}\right )}\right ) \, dx}{e}\\ &=\frac {3 \int \frac {e^x}{(-1+x) \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}-\frac {3 \int \frac {e^x}{x^2 \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}-\frac {3 \int \frac {e^x}{x \log ^2\left (-1+\frac {1}{x}\right )} \, dx}{e}+\frac {3 \int \frac {e^x}{x^2 \log \left (-1+\frac {1}{x}\right )} \, dx}{e}-\frac {3 \int \frac {e^x}{x \log \left (-1+\frac {1}{x}\right )} \, dx}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.03, size = 18, normalized size = 1.00 \begin {gather*} -\frac {3 e^{-1+x}}{x \log \left (-1+\frac {1}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 20, normalized size = 1.11 \begin {gather*} -\frac {3 \, e^{\left (x - 1\right )}}{x \log \left (-\frac {x - 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 1.11 \begin {gather*} -\frac {3 \, e^{\left (x - 1\right )}}{x \log \left (-\frac {x - 1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 129, normalized size = 7.17
method | result | size |
risch | \(-\frac {6 i {\mathrm e}^{x -1}}{\left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x}\right )^{3}-2 \pi -2 i \ln \relax (x )+2 i \ln \left (x -1\right )\right ) x}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 22, normalized size = 1.22 \begin {gather*} \frac {3 \, e^{\left (x - 1\right )}}{x \log \relax (x) - x \log \left (-x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.51, size = 20, normalized size = 1.11 \begin {gather*} -\frac {3\,{\mathrm {e}}^{-1}\,{\mathrm {e}}^x}{x\,\ln \left (-\frac {x-1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 17, normalized size = 0.94 \begin {gather*} - \frac {3 e^{x}}{e x \log {\left (\frac {1 - x}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________