Optimal. Leaf size=21 \[ e^{-2+e^{x+x^2}+(-6+x) x} (1+\log (x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.96, antiderivative size = 95, normalized size of antiderivative = 4.52, number of steps used = 1, number of rules used = 1, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2288} \begin {gather*} \frac {e^{x^2+e^{x^2+x}-6 x-2} \left (-2 x^2-e^{x^2+x} \left (2 x^2+x\right )+\left (-2 x^2-e^{x^2+x} \left (2 x^2+x\right )+6 x\right ) \log (x)+6 x\right )}{x \left (-e^{x^2+x} (2 x+1)-2 x+6\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{-2+e^{x+x^2}-6 x+x^2} \left (6 x-2 x^2-e^{x+x^2} \left (x+2 x^2\right )+\left (6 x-2 x^2-e^{x+x^2} \left (x+2 x^2\right )\right ) \log (x)\right )}{x \left (6-2 x-e^{x+x^2} (1+2 x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 22, normalized size = 1.05 \begin {gather*} e^{-2+e^{x+x^2}-6 x+x^2} (1+\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 20, normalized size = 0.95 \begin {gather*} {\left (\log \relax (x) + 1\right )} e^{\left (x^{2} - 6 \, x + e^{\left (x^{2} + x\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{2} + {\left (2 \, x^{2} + x\right )} e^{\left (x^{2} + x\right )} + {\left (2 \, x^{2} + {\left (2 \, x^{2} + x\right )} e^{\left (x^{2} + x\right )} - 6 \, x\right )} \log \relax (x) - 6 \, x + 1\right )} e^{\left (x^{2} - 6 \, x + e^{\left (x^{2} + x\right )} - 2\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 1.00
method | result | size |
risch | \(\left (\ln \relax (x )+1\right ) {\mathrm e}^{{\mathrm e}^{\left (x +1\right ) x}+x^{2}-6 x -2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 20, normalized size = 0.95 \begin {gather*} {\left (\log \relax (x) + 1\right )} e^{\left (x^{2} - 6 \, x + e^{\left (x^{2} + x\right )} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.03, size = 23, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{-6\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}\,{\mathrm {e}}^x}\,\left (\ln \relax (x)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________